Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate 201056 SO1894 acetyl-CoA carboxylase, biotin carboxylase, putative (NCBI ptt file)
Query= metacyc::MONOMER-13597 (509 letters) >FitnessBrowser__MR1:201056 Length = 694 Score = 373 bits (958), Expect = e-107 Identities = 205/493 (41%), Positives = 290/493 (58%), Gaps = 6/493 (1%) Query: 4 FSRVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALDSYL 63 F+++L+ANRGEIA R++K + MG+ +A+YS+ADK A H ADE++Y+G + DSYL Sbjct: 12 FTKLLIANRGEIACRIIKTAQAMGVRTVALYSDADKNARHVAMADESFYLGGSAPADSYL 71 Query: 64 NIEHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLDGKR 123 + II A+KA AIHPGYGFLSENA+FA E AGI F+GP S+ + + K K Sbjct: 72 KGDLIIAIAKKAQAQAIHPGYGFLSENADFARKCEAAGIVFVGPGSDAIDAMGSKSAAKA 131 Query: 124 LANMAGVPTAPGSDGPVTSIDEALKL-AEKIGYPIMVKAASGGGGVGITRVDNQDQLMDV 182 + A VP PG G D LK A KIG+P+++KAA GGGG G+ V+++ ++MD Sbjct: 132 IMTAAQVPLVPGYHGD-DQTDATLKAEALKIGFPMLIKAAYGGGGKGMRIVEHEGEIMDA 190 Query: 183 WERNKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQKLIE 242 +R A +FG L +E+Y PRH+E Q+ D +GN + +R+C+IQRR+QK++E Sbjct: 191 INSARREAASSFGNDKLLMERYLRQPRHVEVQVFADTFGNAIYLSDRDCSIQRRHQKVVE 250 Query: 243 EAPSPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQVEHPT 302 EAP+P L E R M E + K I+Y GT E D FYF+E+N RLQVEHP Sbjct: 251 EAPAPGLSDELRAQMGEAAVAAAKAIDYVGAGTIEFLL-DTDNSFYFMEMNTRLQVEHPV 309 Query: 303 TELIFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGFVTY 362 TE++ DLVK Q+ +A+G+ LP Q+++ R+ G A E RI AED N F +SG + + Sbjct: 310 TEMVTGQDLVKWQLMVASGQPLPLKQDEV--RIHGHAFEVRIYAEDPQNEFLPASGKLNF 367 Query: 363 YREP-TGPGVRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRALADYKIGGIK 421 REP VR+DSGI + +YD +++KLIV+ ESR A+Q + AL Y+I G+K Sbjct: 368 LREPEQSKYVRIDSGIRENDVISNFYDPMIAKLIVWDESRPRALQRLVHALESYQISGLK 427 Query: 422 TTIELYKWIMQDPDFQEGKFSTSYISQKTDQFVKYLREQEEIKAAIAAEIQSRGLLRTSS 481 IE I + P F + FST +I++ D + + + A AA Q + Sbjct: 428 HNIEFLANIAEHPAFAKADFSTDFINRYGDALIGSASSEADTALAFAALYQVLARKEAAK 487 Query: 482 TDNKGKAQSKSGW 494 A S W Sbjct: 488 AQAINSADPDSPW 500 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 774 Number of extensions: 37 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 694 Length adjustment: 37 Effective length of query: 472 Effective length of database: 657 Effective search space: 310104 Effective search space used: 310104 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory