Align Threonine dehydratase 2 biosynthetic, chloroplastic; SlTD2; Threonine deaminase 2; EC 4.3.1.17; EC 4.3.1.19 (characterized)
to candidate 203422 SO4344 threonine dehydratase (NCBI ptt file)
Query= SwissProt::P25306 (595 letters) >FitnessBrowser__MR1:203422 Length = 545 Score = 382 bits (982), Expect = e-110 Identities = 216/517 (41%), Positives = 311/517 (60%), Gaps = 10/517 (1%) Query: 86 PTGGDSDELFQ-YLVDILASPVYDVAIESPLELAEKLSDRLGVNFYIKREDKQRVFSFKL 144 P + +L Q YL IL S VYDVA +PL KLS RLG ++KRED Q V SFKL Sbjct: 21 PASVEKSQLAQHYLQKILLSSVYDVAKVTPLSSLNKLSARLGCQVFLKREDMQPVHSFKL 80 Query: 145 RGAYNMMSNLSREELDKGVITASAGNHAQGVALAGQRLNCVAKIVMPTTTPQIKIDAVRA 204 RGAYN ++ LS+ E +GV+ ASAGNHAQGVA++ A IVMP TTP IK+DAVR Sbjct: 81 RGAYNRIAQLSQAECQRGVVCASAGNHAQGVAMSAASRGVDAVIVMPETTPDIKVDAVRR 140 Query: 205 LGGDVVLYGKTFDEAQTHALELSEKDGLKYIPPFDDPGVIKGQGTIGTEINRQLKDIHAV 264 LGG+VVL+G+ FD+A A+ +++++G YI PFDD VI GQGTI E+ +Q +D+ + Sbjct: 141 LGGNVVLHGQAFDQANGFAMTMAQQEGRVYIAPFDDEAVIAGQGTIAQEMLQQQRDLEVI 200 Query: 265 FIPVGGGGLIAGVATFFKQIAPNTKIIGVEPYGAASMTLSLHEGHRVKLSNVDTFADGVA 324 F+PVGGGGLIAG+A ++K + P KI+GVEP AA + ++ G V LS V FADGVA Sbjct: 201 FVPVGGGGLIAGIAAYYKAVMPQVKIVGVEPEDAACLKAAMEAGEPVTLSQVGLFADGVA 260 Query: 325 VALVGEYTFAKCQELIDGMVLVANDGISAAIKDVYDEGRNILETSGAVAIAGAAAYCEFY 384 V +G F + +D +V V +D I AA+KD++++ R I E +GA+++AG Y Sbjct: 261 VKRIGTEPFRVAKLCVDAVVTVTSDEICAAVKDIFEDTRAIAEPAGALSLAGLKKYVSTN 320 Query: 385 KI----KNENIVAIASGANMDFSKLHKVTELAGLGSGKEALLATFMVEQQGSFKTFVGLV 440 + E + AI SGAN++F L V+E LG KEA+LA + E+ GSF F L+ Sbjct: 321 ATGESGRGEKVAAILSGANVNFHSLRYVSERCELGEQKEAVLAVKVPERPGSFLRFCELL 380 Query: 441 GSLNFTELTYRFTSERKNALILYRVNVDK-ESDLEKMIEDMKSSNMTTLNLSHNELVVDH 499 TE YRF+S R A++ + + K +LE++I ++ + +LS +E H Sbjct: 381 EKRVMTEFNYRFSS-RDMAVVFAGIRLTKGHGELEQIINTLEDNGFEVQDLSGDETAKLH 439 Query: 500 LKHLVGG--SANISDEIFGEFIVPEKAETLKTFLDAFSPRWNITLCRYRNQGDINASLLM 557 ++++VGG + + +F F PE L FL +WNI+L YRN G +L Sbjct: 440 VRYMVGGHPPEPLEERLF-SFEFPEHPGALLKFLTTLQSKWNISLFHYRNHGAAFGRVLA 498 Query: 558 GFQVPQAEMDEFKNQADKLGYPYELDNYNEAFNLVVS 594 GF+VP ++ F+ +LG+ Y+ + + A+ L ++ Sbjct: 499 GFEVPASDALPFQQFLTELGFVYQEETQSPAYQLFLN 535 Lambda K H 0.317 0.135 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 666 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 595 Length of database: 545 Length adjustment: 36 Effective length of query: 559 Effective length of database: 509 Effective search space: 284531 Effective search space used: 284531 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory