Align Alpha-glucosidase; EC 3.2.1.20 (characterized, see rationale)
to candidate 201365 SO2213 oligo-1,6-glucosidase (NCBI ptt file)
Query= uniprot:H3K096 (538 letters) >lcl|FitnessBrowser__MR1:201365 SO2213 oligo-1,6-glucosidase (NCBI ptt file) Length = 540 Score = 644 bits (1662), Expect = 0.0 Identities = 300/537 (55%), Positives = 379/537 (70%), Gaps = 3/537 (0%) Query: 5 MMWWRGGVIYQIYPRSFLDSRGDGVGDLNGITEKLDYVASLNVDGIWLSPFFTSPMLDFG 64 + WWRG VIYQIYPRS LD+ GDGVGDL GI KLDY+ASLNVD IW+SPFF SPM DFG Sbjct: 4 LTWWRGAVIYQIYPRSLLDTNGDGVGDLRGIITKLDYIASLNVDAIWISPFFKSPMADFG 63 Query: 65 YDVSDYRDVDPMFGTLEDFKALLEKAHSLGLKVMIDQVISHTSDQHPWFQESRQNRTNPK 124 YD+SDYR++DP+FG+++DF L+EKAH G+KV+IDQV+SHTSDQH WF ESR++RTNPK Sbjct: 64 YDISDYREIDPLFGSMQDFDELIEKAHQRGIKVIIDQVLSHTSDQHAWFIESRESRTNPK 123 Query: 125 ADWFVWADPKPDGTPPNNWLSIFGGSAWTFDSRRQQYYLHNFLTSQPDVNFHHPEARQAQ 184 ADW+VWADP+ DGTPPNNWL+IFGG AW ++ RRQQYYLHNFL SQPD+NFH+P+ RQA Sbjct: 124 ADWYVWADPREDGTPPNNWLAIFGGCAWEWEPRRQQYYLHNFLRSQPDINFHNPDVRQAV 183 Query: 185 LDNMRFWLDLGVDGFRLDTVNFYFHDAELRDNPPVPKGEAKTLGAPEANPYTWQRHVYDL 244 LDN+ FWL GVDGFRLD + F FHD LRDNP PK + + G E NPY +Q H Y+ Sbjct: 184 LDNVEFWLKKGVDGFRLDAITFCFHDELLRDNPAKPKEKRQGRGFSEDNPYAYQYHYYNN 243 Query: 245 SRPENLDFLKDLRALMDEYPGTTTVGEIGDDNPLERMAEYTAGGDKLHMAYTFDLLNMPH 304 RP+ + F++ LR L++ YPGT T+GE+ ++ L MA YT G D+LHMAY+F+LL + Sbjct: 244 DRPQTIQFIEALRQLINRYPGTVTLGEVSAEDSLAVMAAYTKGDDRLHMAYSFELLTDDY 303 Query: 305 SASYLREVIERFQRLAGDAWPCWATSNHDVVRSATRWGADEDPHAYPKVMLAVLFSLRGS 364 SA+Y+R+ +E + GD WPCWA NHDV R A+RWG + K++ A+L SLRGS Sbjct: 304 SAAYIRQTVEALENSIGDGWPCWAIGNHDVQRVASRWGRGKQTSDMAKMLNAMLCSLRGS 363 Query: 365 VCLYQGEELGLPEADVPFERIQDPYGKVLWPEFKGRDGCRTPMPWTD-GEQGGFSPVEPW 423 VC YQGEELGL E + F +QDP+GK WP FKGRDGCRTPMPW + GFS V PW Sbjct: 364 VCSYQGEELGLTEVPIEFHELQDPFGKTFWPMFKGRDGCRTPMPWEQYADFSGFSQVSPW 423 Query: 424 LPMEARHLELAVSRQQDDPNATLNTVRALLAFRRSHPALFDGDLSLVDVGDDLLGFTRQK 483 LP+ A H LAV Q+ D ++ L+ R LA+R+ +PAL ++ +D + LL F R+ Sbjct: 424 LPIAAAHRALAVDLQEADCHSVLHGYRQFLAWRKCYPALITSEIEFLDAPEPLLVFVRKL 483 Query: 484 GDETLLCVFNLTGQEQQTTLPVEVASDLPVAH--FTATRDGSTLTLPAYQAAFMQVA 538 G++ LL FNL E Q +L H TA R G +L AY + + +A Sbjct: 484 GEQKLLVCFNLLDAETQLSLTGLKLQQELAGHGLKTAHRQGDSLIFSAYASFYALLA 540 Lambda K H 0.320 0.138 0.443 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 953 Number of extensions: 36 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 538 Length of database: 540 Length adjustment: 35 Effective length of query: 503 Effective length of database: 505 Effective search space: 254015 Effective search space used: 254015 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory