Align Phosphoenolpyruvate--protein phosphotransferase (EC 2.7.3.9) (characterized)
to candidate 200507 SO1332 phosphoenolpyruvate-protein phosphotransferase PtsP (NCBI ptt file)
Query= reanno::psRCH2:GFF3291 (960 letters) >FitnessBrowser__MR1:200507 Length = 744 Score = 342 bits (878), Expect = 4e-98 Identities = 218/563 (38%), Positives = 317/563 (56%), Gaps = 14/563 (2%) Query: 410 GIAASPGIAIGPVLVRKPQV-IDYPK-RGESPVIELQRLDAALDKVHADIGTL---IDES 464 G +AS GIAI V ++ ++ P R E V+E RL AA+ + IG L D Sbjct: 172 GTSASSGIAIAHAFVLGGEISLEQPDIRCEDIVLESNRLVAAMGRCKEAIGALSQRFDRE 231 Query: 465 QVASIRDIFTTHQAMLKDPALREEVQVRLQKGLSAEAAWMEEIESAAQQQEALHDKLLAE 524 Q + IF Q +L D +L E + G AE+A QQ A+ D L E Sbjct: 232 QDEEVASIFNALQLLLDDASLGGEYAREVLLGWEAESAVSRVSLRYIQQFLAMEDPYLKE 291 Query: 525 RAADLRDVGRRVLACLTGVEA-EQAPDEPYILVMDEVAPSDVATLNAQRVAGILTAGGGA 583 RA+D+RD+G++VL L E E PD+P ILV E + +A Q++AGI+T GG Sbjct: 292 RASDIRDLGQKVLRQLIEPERLELEPDKPVILVTKEADATMLAEFPRQKLAGIVTELGGV 351 Query: 584 TSHSAIIARALGIPAIVGAGPGVLGLARNTLLLLDGERGELLVAPSGAQLEQARSERAAR 643 SH+AI+ARALG+PAI G + LL+++ RG+L+V+PS A + + RS +A+ Sbjct: 352 NSHAAILARALGVPAITGVEQLLSADIDQKLLVVNASRGQLMVSPSPAIVSEYRSLISAQ 411 Query: 644 EERKHLANERRMDAAVTRDGHPVEIAANIGAAGETPEAVAMGAEGIGLLRTELVFMNHSQ 703 + + + +V DG + + N G +A GA+GIGL RTE+ FM + Sbjct: 412 KALQRQYAQELTLPSVMLDGKRIRLYLNAGLLSGVASEIAEGADGIGLYRTEIPFMLQQR 471 Query: 704 APNQATQEAEYRRVLEALEGRPLVVRTLDVGGDKPLPYWPMPAEENPFLGVRGIRLSLQR 763 P+++ Q Y++VL A GRP+V+RTLDVGGDKPLPY+P+ E+NPFLG RGIRLSL Sbjct: 472 FPSESEQVKVYQQVLSAASGRPVVMRTLDVGGDKPLPYFPI-KEDNPFLGWRGIRLSLDH 530 Query: 764 PDILETQLRALL-ASADGRPLRIMFPMVGNIDEWRTAKAMVDRLRVELP------VADLQ 816 P++ QLRA+L A A+G+ L I+ PMV N+DE A A +++ VEL + + Sbjct: 531 PELFLVQLRAMLQAGAEGKQLSILLPMVSNLDEIDQALAYLEQAHVELKNDVNSNIKMPR 590 Query: 817 VGIMIEIPSAALIAPVLAQEVDFFSIGTNDLTQYTLAIDRGHPTLSGQADGLHPAVLRLI 876 +GIM+E+P+ +A+ VDF S+G+NDLTQY LA+DR +P +S D HP +LR + Sbjct: 591 IGIMLEVPAMLYQLDEVAKRVDFVSVGSNDLTQYLLAVDRNNPRVSSLFDSYHPGILRAL 650 Query: 877 GMTVEAAHAHGKWVGVCGELAADALAVPLLVGLGVDELSVSARSIALVKARVRELDFAAC 936 H + +CGELA + + LLV +G +LS++ S+A + +R + Sbjct: 651 HQARLDCEYHHLDISICGELAGEPMGAILLVAMGYHQLSMNQGSLARINYLLRRVSGEDL 710 Query: 937 QRLAQQALMLPGAHEVRAFVGEH 959 +L QAL L +VR V E+ Sbjct: 711 AQLLAQALSLSNGFQVRELVKEY 733 Lambda K H 0.317 0.134 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1333 Number of extensions: 56 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 960 Length of database: 744 Length adjustment: 42 Effective length of query: 918 Effective length of database: 702 Effective search space: 644436 Effective search space used: 644436 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory