Align Phosphotransferase system transporter enzyme I, FruI, component of Fructose-specific PTS permease, FruIIBC/FruI-HPr-IIA (characterized)
to candidate 201387 SO2237 phosphoenolpyruvate-protein phosphotransferase (NCBI ptt file)
Query= TCDB::Q9HY55 (956 letters) >FitnessBrowser__MR1:201387 Length = 567 Score = 319 bits (817), Expect = 4e-91 Identities = 203/550 (36%), Positives = 297/550 (54%), Gaps = 14/550 (2%) Query: 403 LQAIAASPGIASGPA----HVQVAQRFEFQPRGESPAHERERLLRAKRAVDEEI-VGLVE 457 + I S GIA G A H + + P P ++ + L+A +A+ +++ + + Sbjct: 3 ITGIIVSSGIAFGKALHLNHCENHLDYRPIPLSRIPL-QQSKFLKALQALKQQLSLSQAK 61 Query: 458 RSTVKAIREIFVTHREMLDDPELAEQVQLRLNRGE-SAEAAWSRVVEDSAAQQEALHDAL 516 ++ +LDD EL EQV+ + + SA A R+ A + E+L D Sbjct: 62 LDPESENYQLIEADLLLLDDDELIEQVKEAIRTLQLSASVAVERIFAHQANELESLDDPY 121 Query: 517 LAERAADLRDLGRRVLARLCG--VEAPREPEQPYILVMDEVGPSDVARLDAQRVAGILTA 574 LA RA D+R LG+R++ + G + + + IL+ ++ P++ A L + ++GI+ Sbjct: 122 LANRAQDVRCLGQRIVTAINGRLEQGLADLSEATILLAQDLTPAEFALLPKEHISGIVLK 181 Query: 575 RGGATSHSAIIARALGIPALVGAGAAVLGLEPGTALLLDGEHGWLQVAPSTEQLQQAAAE 634 GG TSH+AI+ARA GIPA++ + T L+LD G L V P EQ + Sbjct: 182 TGGLTSHTAILARAAGIPAMLSCQFDAEFIPNNTPLVLDALSGVLYVNPEPEQQARLTVT 241 Query: 635 RDARQQRQARADAQRLEPARTRDGHAVEVCANLGDTAGAARAVELGAEGVGLLRTEFVFM 694 Q R+ R PA+T+DGH V + AN+G+ + GA+G+GL RTEF+ M Sbjct: 242 LHHEQARRQALQTYRDVPAQTQDGHHVGLLANVGNLNEITHVKDEGADGIGLFRTEFMLM 301 Query: 695 NNARAPDLATQEAEYRRVLDALDGRPLVARTLDVGGDKPLPYWPIPHEENPYLGLRGIRL 754 N + PD Q Y L ALDG+ RTLD+G DK LP E+NP LG RG+R Sbjct: 302 NTSTLPDEKAQYNLYCEALHALDGKTFTIRTLDIGADKELPCLCQNIEDNPALGQRGVRY 361 Query: 755 TLQRPQILETQLRALFRAAGERPLRVMFPMVGSLDEWRQARDLALRLR-----EEIPLAD 809 TL P++ +TQLRA+ RAA P+R+MFPMV ++E + L + EE + Sbjct: 362 TLAHPELFKTQLRAILRAANHGPIRLMFPMVNQVEELDEIFKLIAECQDALEEEEKGYGE 421 Query: 810 LQLGIMVEVPSAALLAPVLAREVDFFSVGTNDLTQYTLAIDRGHPSLSAQADGLHPAVLQ 869 L GI+VE P+A L + +DF S+GTNDLTQY +A DR +P L+ L PA+L Sbjct: 422 LSYGIVVETPAAVLNLASMLPRLDFVSIGTNDLTQYAMAADRTNPQLTKDYPSLSPAILH 481 Query: 870 LIDMTVRAAHAEGKWVGVCGELAADPLALPLLVGLGVDELSVSARSIALVKAGVRELQLV 929 LI+MT+ A A G V +CGELA+ P PLLVG+G+DELSV+ S+ VKA + + +L Sbjct: 482 LINMTITQAKATGVTVSLCGELASSPQMAPLLVGMGLDELSVNLSSLLEVKAAICQGELA 541 Query: 930 AARGLARKAL 939 LA A+ Sbjct: 542 KFSELAHTAM 551 Lambda K H 0.318 0.134 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 892 Number of extensions: 31 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 956 Length of database: 567 Length adjustment: 40 Effective length of query: 916 Effective length of database: 527 Effective search space: 482732 Effective search space used: 482732 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory