Align Aldehyde dehydrogenase family 2 member C4; ALDH1a; Protein REDUCED EPIDERMAL FLUORESCENCE 1; EC 1.2.1.3 (characterized)
to candidate 202599 SO3496 aldehyde dehydrogenase (NCBI ptt file)
Query= SwissProt::Q56YU0 (501 letters) >FitnessBrowser__MR1:202599 Length = 498 Score = 407 bits (1047), Expect = e-118 Identities = 202/473 (42%), Positives = 310/473 (65%), Gaps = 4/473 (0%) Query: 21 KLFINGQFIDAASGKTFETIDPRNGEVIATIAEGDKEDVDLAVNAARYAFDHGPWPRMTG 80 K FING++ DA+SG TF+ I P +G ++A +A D D ++AV AR FD G W + Sbjct: 22 KAFINGEYRDASSGNTFDCISPIDGRLLAPVASCDLMDANIAVANAREVFDSGVWSKAAP 81 Query: 81 FERAKLINKFADLIEENIEELAKLDAVDGGKLFQLGKYADIPATAGHFRYNAGAADKIHG 140 +R +++ +FA+L+EEN ELA L+ +D GK + K D+ A R++ A DK++ Sbjct: 82 VKRKQVMIRFAELLEENANELALLETLDMGKPIRFSKAVDVAGAARAIRWSGEAIDKLYD 141 Query: 141 ETLKMTRQSLFGYTLKEPIGVVGNIIPWNFPSIMFATKVAPAMAAGCTMVVKPAEQTSLS 200 E L T + G +EP+GVV I+PWNFP +M K+ PA+ G ++++KP+E++ L+ Sbjct: 142 E-LAPTAHNEIGMITREPVGVVAAIVPWNFPLLMACWKLGPALVTGNSVILKPSEKSPLT 200 Query: 201 ALFYAHLSKEAGIPDGVLNIVTGFGSTAGAAIASHMDVDKVSFTGSTDVGRKIMQAAAAS 260 A+ A L+ +AGIP GVLN++ G+G T G A+A HMDVD + FTGST + +++M A S Sbjct: 201 AIRIAELAVQAGIPKGVLNVLPGYGHTVGKALALHMDVDTLVFTGSTKIAKQLMIYAGES 260 Query: 261 NLKKVSLELGGKSPLLIFNDA-DIDKAADLALLGCFYNKGEICVASSRVFVQEGIYDKVV 319 N+K+V LE GGKSP ++FNDA D+ AA A +N+GE+C A SR+ V+ G+ D++V Sbjct: 261 NMKRVWLEAGGKSPNIVFNDAPDLKAAAVAAAEAIGFNQGEVCTAGSRLLVESGVKDELV 320 Query: 320 EKLVEKAKDWTVGDPFDSTARQGPQVDKRQFEKILSYIEHGKNEGATLLTGGKAI--GDK 377 + E+ W G P + T G VDK+Q + ILSYI+ G+NEGA+L+ GG+ + Sbjct: 321 GLIAEELASWQPGHPLEPTTVSGAVVDKQQLDTILSYIKAGQNEGASLVYGGQQVLAETG 380 Query: 378 GYFIQPTIFADVTEDMKIYQDEIFGPVMSLMKFKTVEEGIKCANNTKYGLAAGILSQDID 437 G ++QPT+F++V MKI +EIFGPV+S+++F +EE I AN+T YGLAAG+ + DI Sbjct: 381 GVYVQPTVFSNVKNQMKIASEEIFGPVLSVIEFNGMEEAIAIANDTIYGLAAGVWTADIS 440 Query: 438 LINTVSRSIKAGIIWVNCYFGFDLDCPYGGYKMSGNCRESGMDALDNYLQTKS 490 + ++++++G++W+N Y G D+ P+GGYK SGN R+ + + D Y + K+ Sbjct: 441 KAHKTAKALRSGMVWINHYDGGDMTAPFGGYKQSGNGRDKSLHSFDKYTEIKA 493 Lambda K H 0.318 0.136 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 637 Number of extensions: 33 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 501 Length of database: 498 Length adjustment: 34 Effective length of query: 467 Effective length of database: 464 Effective search space: 216688 Effective search space used: 216688 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory