Align Acetyl-coenzyme A synthetase; AcCoA synthetase; Acs; Acetate--CoA ligase; Acyl-activating enzyme; EC 6.2.1.1 (characterized)
to candidate GFF944 HP15_923 acetyl-coA synthetase/AMP-(fatty) acid ligase
Query= SwissProt::P39062 (572 letters) >FitnessBrowser__Marino:GFF944 Length = 549 Score = 319 bits (817), Expect = 2e-91 Identities = 204/554 (36%), Positives = 300/554 (54%), Gaps = 26/554 (4%) Query: 14 NLKNYEETYRHFDWAEAEKHF-SWHETGKLNAAYEAIDRHAESFRKNKVALYYK-DAKRD 71 +L Y + Y +FD A E LN +E D+ A+ ++VALYY+ + D Sbjct: 2 SLPEYTDVYNNFDPAALEADILDGRLDSGLNVCHEICDKWADD--PSRVALYYETEDGGD 59 Query: 72 EKYTFKEMKEESNRAGNVLRRYGNVEKGDRVFIFMPRSPELYFIMLGAIKIGAIAGPLFE 131 TF E+KE S R N L+ G + KGDRV +PR+PEL ++ G ++ GA+ PLF Sbjct: 60 GTLTFAELKEASARFANYLKSQG-IGKGDRVAALLPRTPELLIVIAGTLRAGAVYQPLFT 118 Query: 132 AFMEGAVKDRLENSEAKVVVTTPELLERI-PVDKLPHLQHVFVVGGEA-ESGTNIINYDE 189 AF GA++ R E + K+VVT PE ++ V P VVG A E G +I +++E Sbjct: 119 AFGSGAIEYRFERASTKLVVTNPENYPKLNDVKVCPP-----VVGVNASEIGADIPDFEE 173 Query: 190 AAKQESTRLDIEWMDKKDGFLLHYTSGSTGTPKGVLHVHEAMIQQYQTGKWVLDLKEEDI 249 +S+ + + D FL +TSG+ G KGV +A++ Y K+ +DL++ D Sbjct: 174 TLAAQSSDFEPVMIKGDDPFLQMFTSGTVGKSKGVAVPAKALLAFYVYMKYAIDLQDGDR 233 Query: 250 YWCTADPGWVTGTVYGIFAPWLNGATNVIVGGRFSPESWYGTIEQLGVNVWYSAPTAFRM 309 +W ADPGW G Y + P L G G F+PES Y I + + +APTA+R+ Sbjct: 234 FWNVADPGWAYGLYYAVVGPLLMGHATHFNPGGFTPESTYDMIRKYKITNLAAAPTAYRL 293 Query: 310 LMGAGDEMAAKYDLTSLRHVLSVGEPLNPEVIRWGHKVFNKRIHDTWWMTETGSQLICNY 369 L A D + + + LR S GEPLNPEV+ W + D + TETG CN+ Sbjct: 294 LK-ANDHVLPEGENLGLRVASSAGEPLNPEVVNWIRNRHYCPVKDHYGQTETG-MTCCNF 351 Query: 370 PCM--DIKPGSMGKPIPGVEAAIVDNQGNELPPYRMGNLAIKKGWPSMMHT---IWNNPE 424 + ++ GSMG PG + ++ + + +G LA+ + H W + Sbjct: 352 HGLAHPVREGSMGYASPGHKVVALNEKNEVVGEGEVGQLAVDVKASPLFHFDGYTWGEKD 411 Query: 425 KYESYFMPGGWYVSGDSAYMDEEGYFWFQGRVDDVIMTSGERVGPFEVESKLVEHPAIAE 484 + + G+Y++GD G F F GR DD+I T+G RVGP +VES L+EH A+AE Sbjct: 412 PFVN-----GYYLTGDMVINHGNGNFSFSGRDDDIITTAGYRVGPADVESTLLEHAAVAE 466 Query: 485 AGVIGKPDPVRGEIIKAFIALREGFEPSDK--LKEEIRLFVKQGLAAHAAPREIEFKDKL 542 +GV+GKPD RG IIKA++ ++ + D+ LK+E++ V++ L+ HA PREIEF D+L Sbjct: 467 SGVVGKPDEKRGSIIKAYVVIKGDYALGDEQALKDELQELVRRRLSTHAFPREIEFVDEL 526 Query: 543 PKTRSGKIMRRVLK 556 PKT SGKI R VL+ Sbjct: 527 PKTPSGKIQRFVLR 540 Lambda K H 0.318 0.136 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 899 Number of extensions: 41 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 572 Length of database: 549 Length adjustment: 36 Effective length of query: 536 Effective length of database: 513 Effective search space: 274968 Effective search space used: 274968 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory