GapMind for catabolism of small carbon sources

 

Alignments for a candidate for astC in Marinobacter adhaerens HP15

Align succinylornithine transaminase (EC 2.6.1.81) (characterized)
to candidate GFF3915 HP15_3855 2,4-diaminobutyrate 4-transaminase

Query= BRENDA::A0A140N9B6
         (406 letters)



>FitnessBrowser__Marino:GFF3915
          Length = 422

 Score =  149 bits (377), Expect = 1e-40
 Identities = 124/418 (29%), Positives = 202/418 (48%), Gaps = 35/418 (8%)

Query: 15  IPVYASA-PFIPVRGEGSRLWDQQGKEYIDFAGGIAVNALGHAHPELREALNEQ-----A 68
           + VY+ A P I  R + + L+ + GKEY+DF  G      GH +  L++AL E       
Sbjct: 11  VRVYSRAFPVIFNRAKNAHLYTEDGKEYLDFLAGAGSLNYGHNNDTLKKALLEYIEADGV 70

Query: 69  SKFWHTGNGYTNEPVLRLAKKLIDATFAD--RVFFCNSGAEANEAALKLARKFAHDRYGS 126
           S+         ++ +    K ++D    D    F   +G    EAALKLARK        
Sbjct: 71  SQGLDMFTTAKHDFMESYKKHILDPRGLDYKMQFTGPTGTNCVEAALKLARKV------K 124

Query: 127 HKSGIVAFKNAFHGRTLFTVSAGGQPAYSQDFAPLPADIRHAAYN-----DINSASA--- 178
            +SGI++F N FHG T+  V+  G   +         ++    Y+     D+++ +    
Sbjct: 125 GRSGIISFTNGFHGVTMGAVATTGNKHHRGGVGTPLGNVDFMFYDGYLGDDVDTLAIMDK 184

Query: 179 LIDDST------CAVIVEPIQGEGGVVPASNAFLQGLRELCNRHNALLIFDEVQTGVGRT 232
           L+ D +       AVIVE +QGEGG+      +L+GL ELC +H+ LLI D++Q G GRT
Sbjct: 185 LLSDGSSGFELPAAVIVEAVQGEGGLNACRAEWLKGLSELCKKHDILLILDDIQAGNGRT 244

Query: 233 GELYAYMHYGVTPDLLTTAKALGG-GFPVGALLATEECARVMTVGTHGTTYGGNPLASAV 291
           GE +++   G+ PD++T +K+L G G P+  +L   E   V   G H  T+ GN +A   
Sbjct: 245 GEFFSFEFAGIKPDIVTVSKSLSGYGLPMALVLFKPE-LDVWDPGEHNGTFRGNNMAFIT 303

Query: 292 AGKVLE-LINTPEMLNGVKQRHDWFVERLNTINHRYGLFSEVRGLGLLIGCVLNADYAGQ 350
           A   +E         N VK + +   + L +I  +Y    +++G GL+ G  + A +A  
Sbjct: 304 ARAAVENYWKDDAFANEVKAKTEVLGDALQSICDKYPGQFKMKGRGLMRG--IEAKHADI 361

Query: 351 AKQISQEAAKAGVMVLIAGGN--VVRFAPALNVSEEEVTTGLDRFAAACEHFVSRGSS 406
              I++ A + G+++  +G N  V++    L  SEE++  G    A + +  +  G S
Sbjct: 362 TGPITKRAFEHGLIIETSGPNDEVIKCLMPLTTSEEDLKKGAALLAKSVDEIMQEGLS 419


Lambda     K      H
   0.319    0.135    0.406 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 416
Number of extensions: 27
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 422
Length adjustment: 31
Effective length of query: 375
Effective length of database: 391
Effective search space:   146625
Effective search space used:   146625
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory