Align Glutarate-semialdehyde dehydrogenase; EC 1.2.1.- (characterized)
to candidate GFF2064 HP15_2020 succinate-semialdehyde dehydrogenase I
Query= SwissProt::Q9I6M5 (483 letters) >FitnessBrowser__Marino:GFF2064 Length = 489 Score = 653 bits (1684), Expect = 0.0 Identities = 311/486 (63%), Positives = 392/486 (80%), Gaps = 3/486 (0%) Query: 1 MQLKDAKLFRQQAYVDGAWVDADNGQTIKVNNPATGEIIGSVPKMGAAETRRAIEAADKA 60 ++LK+ +L R+QAY++G W+ A +G+T VN+PA GE + +VP M + R AIEAA A Sbjct: 3 LELKNRELLREQAYINGQWITAKSGKTFAVNDPANGEQLATVPDMDDTDARAAIEAASAA 62 Query: 61 LPAWRALTAKERANKLRRWFDLMIENQDDLARLMTIEQGKPLAEAKGEIAYAASFLEWFG 120 PAWR+ AKERAN LR+WF+L++ NQ+DLARLMT EQGKPLAE++GE+ Y ASF+EWF Sbjct: 63 WPAWRSTPAKERANILRKWFNLLMANQEDLARLMTAEQGKPLAESRGEVGYGASFIEWFA 122 Query: 121 EEAKRIYGDTIPGHQPDKRIIVIKQPIGVTAAITPWNFPSAMITRKAGPALAAGCTMVLK 180 EEAKR YGD IPGH DKRI+VIKQP+GV AAITPWNFP AMITRK PALAAGC +V+K Sbjct: 123 EEAKRAYGDVIPGHGKDKRIVVIKQPVGVVAAITPWNFPIAMITRKVAPALAAGCPVVVK 182 Query: 181 PASQTPYSALALAELAERAGIPKGVFSVVTGS---AGEVGGELTSNPIVRKLTFTGSTEI 237 PA TP SALA+ LAE AG+P G+ +++T S A VG ELT NPIVRK++FTGST + Sbjct: 183 PAEDTPLSALAITALAEEAGVPAGLINIITCSKPNAVSVGSELTGNPIVRKVSFTGSTPV 242 Query: 238 GRQLMAECAQDIKKVSLELGGNAPFIVFDDADLDAAVEGALISKYRNNGQTCVCANRLYV 297 G+ LM + + +KKVSLELGGNAPFIVFDDADLDAAV G + SKYRN GQTCVCANR+YV Sbjct: 243 GKLLMRQASDTVKKVSLELGGNAPFIVFDDADLDAAVAGLMASKYRNTGQTCVCANRVYV 302 Query: 298 QDGVYDAFVDKLKAAVAKLNIGNGLEAGVTTGPLIDAKAVAKVEEHIADAVSKGAKVVSG 357 Q GVYDAF +KLKAAV+K+ +G GLE GPLI+ A+AKV+ HI DA SKGAKV G Sbjct: 303 QAGVYDAFAEKLKAAVSKMVVGPGLEGETQQGPLINDAALAKVKRHIEDATSKGAKVALG 362 Query: 358 GKPHALGGTFFEPTILVDVPKNALVSKDETFGPLAPVFRFKDEAEVIAMSNDTEFGLASY 417 G+ H+LGGTFFEPTIL + L++++ETFGP+AP+F+F+ + E IAM+ND+EFGL++Y Sbjct: 363 GRAHSLGGTFFEPTILTHATQEMLIAREETFGPVAPLFKFETDDEAIAMANDSEFGLSAY 422 Query: 418 FYARDLARVFRVAEQLEYGMVGINTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKY 477 FY+R++ RV+RVAE+LE GM+G+N G+IS EVAPFGG+K SGLGREGS YG+++Y+E+KY Sbjct: 423 FYSRNIHRVWRVAEELESGMIGVNEGIISTEVAPFGGVKESGLGREGSHYGLDEYMELKY 482 Query: 478 LCLGGI 483 LCLGG+ Sbjct: 483 LCLGGM 488 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 727 Number of extensions: 10 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 489 Length adjustment: 34 Effective length of query: 449 Effective length of database: 455 Effective search space: 204295 Effective search space used: 204295 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory