Align 4-aminobutyrate aminotransferase GabT; 5-aminovalerate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.48 (characterized)
to candidate GFF3099 HP15_3042 bifunctional N-succinyldiaminopimelate-aminotransferase/acetylornithine transaminase protein
Query= SwissProt::P22256 (426 letters) >lcl|FitnessBrowser__Marino:GFF3099 HP15_3042 bifunctional N-succinyldiaminopimelate- aminotransferase/acetylornithine transaminase protein Length = 404 Score = 216 bits (550), Expect = 1e-60 Identities = 136/402 (33%), Positives = 208/402 (51%), Gaps = 36/402 (8%) Query: 20 GQIHPIFADRAENCRVWDVEGREYLDFAGGIAVLNTGHLHPKVVAAVEAQLKKLSHTCFQ 79 G I P+ R E R+WD EGRE++D GGIAV GH HP +V A+ Q +K+ H Sbjct: 22 GSIIPV---RGEGSRIWDQEGREFIDLQGGIAVTCLGHSHPGLVGALHDQAEKIWHLS-N 77 Query: 80 VLAYEPYLELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVKIARA------ATKRSGTIA 133 V+ EP L L + + FA++ +G+EA E A K+AR +++ I+ Sbjct: 78 VMTNEPALRLAKTLCDLT---FAERVFFANSGAEANEAAFKLARRYAWEHHGKEKNEIIS 134 Query: 134 FSGAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLHGISEDDAIASIHRIFKN 193 F ++HGRT +T+++ G+ Y G PG ++ A E + + S+ ++ Sbjct: 135 FKNSFHGRTLFTVSVGGQPK-YLEGFEPAPGGIHHA----------EFNDLESVKKLISK 183 Query: 194 DAAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADEVQSGAGRTGTLFA 253 E AIV+EP+QGEGG AF+Q LR LCDE+ +L+ DEVQSG GR+G +A Sbjct: 184 ----EKTCAIVVEPIQGEGGVMPGDQAFLQGLRDLCDENDALLVFDEVQSGVGRSGHFYA 239 Query: 254 MEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGGTYAGNPIACVAALEVLK 313 + GV PD+ + AK + GGFP+A + A+V ++ G G TY GN +AC A V+ Sbjct: 240 YQMYGVVPDILSSAKGLGGGFPVAAMLTTAKVAASLGVGTHGSTYGGNALACAVAQRVVD 299 Query: 314 VFEQENLLQKANDLGQKLKDGLLAIAEKHPEIGDVRGLGAMIAIELFEDGDHNKPDAKLT 373 Q +L+ KL+ G++ I E++ +VRG G ++ L E D Sbjct: 300 TVSQPEILKGVKARSDKLRKGMMDIGERYGVFTEVRGAGLLLGCVLTEKWQGKAKD---- 355 Query: 374 AEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLE 415 + ++G+++L G NV+R+ L I + I LE Sbjct: 356 --FLNAGLEEGVMVLVAGA--NVIRLAPSLIIPEPDIELALE 393 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 516 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 404 Length adjustment: 31 Effective length of query: 395 Effective length of database: 373 Effective search space: 147335 Effective search space used: 147335 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory