Align 4-(gamma-glutamylamino)butanal dehydrogenase (EC 1.2.1.99) (characterized)
to candidate GFF964 HP15_943 aldehyde dehydrogenase family protein
Query= BRENDA::P23883 (495 letters) >FitnessBrowser__Marino:GFF964 Length = 505 Score = 563 bits (1452), Expect = e-165 Identities = 279/493 (56%), Positives = 360/493 (73%), Gaps = 6/493 (1%) Query: 7 AYWQDKALSLAIENRLFINGEYTAAAENETFETVDPVTQAPLAKIARGKSVDIDRAMSAA 66 A WQ A +L +E R ++NG Y AA E F +V P+ LA IA D D+A+ AA Sbjct: 14 AEWQALATNLTLEGRAYLNGTYQWAANGEAFTSVSPIDGRELASIASCDQSDADQAVMAA 73 Query: 67 RGVFERGDWSLSSPAKRKAVLNKLADLMEAHAEELALLETLDTGKPIRHSLRDDIPGAAR 126 R FE G WS +PAKRKAVL + A+L+EAH +ELALLETLD GKPI H+ D+P AR Sbjct: 74 RAAFEAGIWSQLAPAKRKAVLLRFAELIEAHGDELALLETLDMGKPINHASNVDVPATAR 133 Query: 127 AIRWYAEAIDKVYGEVATTSSHELAMIVREPVGVIAAIVPWNFPLLLTCWKLGPALAAGN 186 AIRW AEAIDKVYGE+A T +++ MI REP+GV+AAIVPWNFP+++ WK+ PALA GN Sbjct: 134 AIRWTAEAIDKVYGELAPTPHNQIGMISREPMGVVAAIVPWNFPMIMAAWKIAPALATGN 193 Query: 187 SVILKPSEKSPLSAIRLAGLAKEAGLPDGVLNVVTGFGHEAGQALSRHNDIDAIAFTGST 246 SVILKPSEKSPLSAIRLA LA EAG+P GV NV+ G+GH G+AL+ H D+D + FTGST Sbjct: 194 SVILKPSEKSPLSAIRLAALAGEAGVPAGVFNVLPGYGHTVGKALALHMDVDCLVFTGST 253 Query: 247 RTGKQLLKDAGDSNMKRVWLEAGGKSANIVFADCPDLQQAASATAAGIFYNQGQVCIAGT 306 KQL+ AG SNMKRVWLEAGGKS NIVFAD PDL++AA+ A+ I +NQG+VC AG+ Sbjct: 254 NVAKQLMIYAGQSNMKRVWLEAGGKSPNIVFADAPDLKKAAAEAASAIAFNQGEVCTAGS 313 Query: 307 RLLLEESIADEFLALLKQQAQNWQPGHPLDPATTMGTLIDCAHADSVHSFIREGESKGQL 366 RLL+E SI EF+ L+ + + W+PGHPLDPATT G ++D A D + +I G+S+G Sbjct: 314 RLLVENSIRAEFVRLICEALKTWRPGHPLDPATTCGAIVDQAQLDRIIDYIGIGQSEGAR 373 Query: 367 LLDG-----RNAGLAAAIGPTIFVDVDPNASLSREEIFGPVLVVTRFTSEEQALQLANDS 421 L++G N G + PT+F V+ ++ EEIFGPVL V F + ++A+ +ANDS Sbjct: 374 LVEGGQRILENTG-GLFVQPTVFDGVNNQMRIASEEIFGPVLSVIGFDTADEAVAIANDS 432 Query: 422 QYGLGAAVWTRDLSRAHRMSRRLKAGSVFVNNYNDGDMTVPFGGYKQSGNGRDKSLHALE 481 YGL AAVWT +++ AH++++ L+AGSV++N+Y+ GDMT PFGG+KQSGNGRDKS+HA + Sbjct: 433 IYGLAAAVWTSNINTAHKVAKALRAGSVWINHYDGGDMTAPFGGFKQSGNGRDKSVHAFD 492 Query: 482 KFTELKTIWISLE 494 K+TELK W+ LE Sbjct: 493 KYTELKATWLVLE 505 Lambda K H 0.317 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 675 Number of extensions: 18 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 505 Length adjustment: 34 Effective length of query: 461 Effective length of database: 471 Effective search space: 217131 Effective search space used: 217131 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory