Align N-succinylglutamate 5-semialdehyde dehydrogenase; EC 1.2.1.71; Succinylglutamic semialdehyde dehydrogenase; SGSD (uncharacterized)
to candidate GFF2064 HP15_2020 succinate-semialdehyde dehydrogenase I
Query= curated2:Q1QTQ7 (489 letters) >FitnessBrowser__Marino:GFF2064 Length = 489 Score = 208 bits (529), Expect = 4e-58 Identities = 151/468 (32%), Positives = 229/468 (48%), Gaps = 12/468 (2%) Query: 4 KQQLLIDGAWVDGDAAR-FAKTDPVSGETLWTATAASATQVEHAVAAARQAFPDWARRSF 62 ++Q I+G W+ + + FA DP +GE L T T A+ AA A+P W Sbjct: 12 REQAYINGQWITAKSGKTFAVNDPANGEQLATVPDMDDTDARAAIEAASAAWPAWRSTPA 71 Query: 63 AERQAVVERFRECLETHREHLATAIAQETGKPLWEARTEVGAMIGKVAISITAYHERTGE 122 ER ++ ++ L ++E LA + E GKPL E+R EVG + G+ Sbjct: 72 KERANILRKWFNLLMANQEDLARLMTAEQGKPLAESRGEVGYGASFIEWFAEEAKRAYGD 131 Query: 123 RARDIG-DARAVLRHRPHGVLAVYGPYNFPGHLPNGHIVPALLAGNAVVFKPSEQTPMTA 181 G D R V+ +P GV+A P+NFP + + PAL AG VV KP+E TP++A Sbjct: 132 VIPGHGKDKRIVVIKQPVGVVAAITPWNFPIAMITRKVAPALAAGCPVVVKPAEDTPLSA 191 Query: 182 DLTLQCWLEAGLPAGVINLV----QGAAEVGQALAGSADIDGLLFTGSAKVGGLLHRQFG 237 EAG+PAG+IN++ A VG L G+ + + FTGS VG LL RQ Sbjct: 192 LAITALAEEAGVPAGLINIITCSKPNAVSVGSELTGNPIVRKVSFTGSTPVGKLLMRQAS 251 Query: 238 GQVDKILALELGGNNPLVVKDVPDREAAVLSILQSAFASGGQRCTCARRLIVPHGAVGDD 297 V K+ +LELGGN P +V D D +AAV ++ S + + GQ C CA R+ V G V D Sbjct: 252 DTVKKV-SLELGGNAPFIVFDDADLDAAVAGLMASKYRNTGQTCVCANRVYVQAG-VYDA 309 Query: 298 LIDALTSAIAELRVAAPFSEPAPFYAGLTSVEAADGLLAAQDDLVARGGRPLSRMRRLQA 357 + L +A++++ V P E L + A + +D ++G + R Sbjct: 310 FAEKLKAAVSKM-VVGPGLEGETQQGPLINDAALAKVKRHIEDATSKGAKVALGGRAHSL 368 Query: 358 GTSLLSPGLIDVTGCD--VPDEEHFGPLLKVHRYRDWDEAIALANDTRYGLSAGLIGGER 415 G + P ++ + + EE FGP+ + ++ DEAIA+AND+ +GLSA Sbjct: 369 GGTFFEPTILTHATQEMLIAREETFGPVAPLFKFETDDEAIAMANDSEFGLSAYFYSRNI 428 Query: 416 ADWDDFLLRIRAGIVNWNRQTTGASSDAPFGGIGDSGNHRPSAYYAAD 463 + +G++ N ++ APFGG+ +SG R ++Y D Sbjct: 429 HRVWRVAEELESGMIGVNEGII-STEVAPFGGVKESGLGREGSHYGLD 475 Lambda K H 0.319 0.135 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 622 Number of extensions: 34 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 489 Length of database: 489 Length adjustment: 34 Effective length of query: 455 Effective length of database: 455 Effective search space: 207025 Effective search space used: 207025 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory