Align 3-hydroxyadipyl-CoA dehydrogenase; EC 1.1.1.- (characterized)
to candidate GFF2749 HP15_2693 3-hydroxybutyryl-CoA dehydrogenase
Query= SwissProt::P76083 (475 letters) >FitnessBrowser__Marino:GFF2749 Length = 506 Score = 385 bits (988), Expect = e-111 Identities = 224/503 (44%), Positives = 306/503 (60%), Gaps = 30/503 (5%) Query: 3 INVQT-VAVIGSGTMGAGIAEVAASHGHQVLLYDISAEALTRAIDGIHARLNSRVTRGKL 61 ++ QT VAV+G+G MG+GIA+VAA GHQV L+D A DGI +L RV +GK+ Sbjct: 4 LDTQTKVAVVGAGAMGSGIAQVAAQAGHQVYLHDQREGAAEAGRDGIAKQLQRRVDKGKM 63 Query: 62 TAETCERTLKRLIPVTDIHALAAADLVIEAASERLEVKKALFAQLAEVCPPQTLLTTNTS 121 + + + R+ PV + +A A LVIEA E L++K+ L A L ++C +L TNTS Sbjct: 64 QQQELDDVIGRIHPVAKLDDVADAGLVIEAIIEDLQIKRQLLASLEDLCTADAILATNTS 123 Query: 122 SISITAIAAEIKNPERVAGLHFFNPAPVMKLVEVVSGLATAAEVVEQLCELTLSWGKQPV 181 SIS+TA+ A++ PER+ G+HFFNPAP+M LVEVV GLAT+ V + + +WGK+PV Sbjct: 124 SISVTALGADMSKPERLVGMHFFNPAPLMALVEVVMGLATSKTVADTVHATATAWGKKPV 183 Query: 182 RCHSTPGFIVNRVARPYYSEAWRALEEQVAAPEVIDAALRDGAGFPMGPLELTDLIGQDV 241 STPGFIVNRVARP+Y+E+ R L+EQ +DA +R+ F MG ELTDLIG DV Sbjct: 184 YATSTPGFIVNRVARPFYAESLRLLQEQATDAATLDAIIREAGQFRMGAFELTDLIGHDV 243 Query: 242 NFAVTCSVFNAFWQERRFLPSLVQQELVIGGRLGKKSGLGVYDW--RAER---------- 289 N+AVT SVFN+++Q+ RFLPSL+Q+ELV GRLG+KSG G Y + AE+ Sbjct: 244 NYAVTSSVFNSYYQDPRFLPSLIQKELVEAGRLGRKSGQGFYPYGESAEKPQPKTEPAHQ 303 Query: 290 --EAVVGLEAVSDSFSPMKVEKKSDGVTEID----------DVLLIETQGE--TAQALAI 335 E+V+ E +P+ K+ G+T I+ D +L T G T +A Sbjct: 304 SDESVIIAEGNPGVAAPLLERLKAAGLTIIERDGPGQIRFGDAVLALTDGRMATERAACE 363 Query: 336 RLARPV---VVIDKMAGKVVTIAAAAVNPDSATRKAIYYLQQQGKTVLQIADYPGMLIWR 392 +A V + D + +A A D+A A LQ+ G V IAD PG++I R Sbjct: 364 GVANLVLFDLAFDYSKASRLALAPADQASDAAVSCACALLQKAGIEVSLIADRPGLVIMR 423 Query: 393 TVAMIINEALDALQKGVASEQDIDTAMRLGVNYPYGPLAWGAQLGWQRILRLLENLQHHY 452 TVAM+ NEA DA GVA+ DID AM+ G+NYP GPL+W +LG + ++L N+Q Y Sbjct: 424 TVAMLANEAADAALHGVATVADIDLAMKAGLNYPDGPLSWSDRLGAGHVFKVLTNIQTSY 483 Query: 453 GEERYRPCSLLRQRALLESGYES 475 E+RYRP LLR+ A + G+ S Sbjct: 484 AEDRYRPALLLRKNAFAQKGFYS 506 Lambda K H 0.319 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 550 Number of extensions: 17 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 475 Length of database: 506 Length adjustment: 34 Effective length of query: 441 Effective length of database: 472 Effective search space: 208152 Effective search space used: 208152 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory