Align 4-trimethylaminobutyraldehyde dehydrogenase; TMABA-DH; TMABADH; Aldehyde dehydrogenase family 9 member A1; Gamma-aminobutyraldehyde dehydrogenase; EC 1.2.1.47; EC 1.2.1.3; EC 1.2.1.19 (characterized)
to candidate GFF3684 HP15_3626 betaine aldehyde dehydrogenase
Query= SwissProt::Q9JLJ3 (494 letters) >FitnessBrowser__Marino:GFF3684 Length = 489 Score = 503 bits (1296), Expect = e-147 Identities = 256/475 (53%), Positives = 334/475 (70%), Gaps = 8/475 (1%) Query: 25 ASGTEKAF---EPATGREIATFKCSGEKEVNLAVENAKAAFKIWSKKSGLERCQVLLEAA 81 A+ T + F PATG+ I + + E A+E+A+A F WS + +ER ++LL A Sbjct: 18 ANSTGETFPVVNPATGQVIYEVEVADESVQQAAIESARAGFAEWSAMTAIERSRILLRAV 77 Query: 82 RIIKERRDEIAIMETINNGKSIFEAR-LDVDTSWQCLEYYAGLAASMAGEHIQLPGGSFG 140 I++ER DE+A E + GK EA +DV T +E++AGLA S+ G L GG F Sbjct: 78 AILRERNDELAAAEVRDTGKPWQEAEAVDVVTGADAVEFFAGLAPSIEGNQQDL-GGDFY 136 Query: 141 YTRREPLGVCLGIGAWNYPFQIACWKSAPALACGNAMIFKPSPFTPVSALLLAEIYTKAG 200 YTRREPLG+C GIGAWNYP QIACWKSAPALACGNAMIFKPS TP+ A+ LAEI+T+AG Sbjct: 137 YTRREPLGICAGIGAWNYPIQIACWKSAPALACGNAMIFKPSEETPMGAVKLAEIFTEAG 196 Query: 201 APNGLFNVVQGGAATGQFLCQHRDVAKVSFTGSVPTGMKIMEMAAKGIKPITLELGGKSP 260 P G+FNVVQG A GQ+L H ++AKVSFTG V TG K+M A+ +K +T+ELGGKSP Sbjct: 197 VPAGVFNVVQGAAEVGQWLTHHPEIAKVSFTGEVATGKKVMAAASSTLKDVTMELGGKSP 256 Query: 261 LIIFSDCNMKNAVKGALLANFLTQGQVCCNGTRVFVQKEIADAFTKEVVRQTQ-RIKIGD 319 LIIF D +++NA+ A++ NF TQG++C NGTRVFV +++ F + ++ +T+ IK GD Sbjct: 257 LIIFDDADLENAISAAMVGNFYTQGEICTNGTRVFVHEDLYPRFIERLLERTRNNIKPGD 316 Query: 320 PLLEDTRMGPLINAPHLERVLGFVRSAKEQGATVLCGGEPYAPEDPKLKHGYYMTPCILT 379 P+ DT G LI+A H + VL ++ +GAT+ GG + PED K GY++ P I T Sbjct: 317 PMNPDTNFGALISAKHRDLVLDYIAKGLSEGATLSHGGRAFEPEDS--KGGYFVEPTIFT 374 Query: 380 NCTDDMTCVKEEIFGPVMSILTFETEAEVLERANDTTFGLAAGVFTRDIQRAHRVAAELQ 439 +CTDDMT VKEEIFGPVMS+LTF E EV+ RAN+T GLAAGVFT DI+RAHRV ++Q Sbjct: 375 DCTDDMTIVKEEIFGPVMSVLTFRDEDEVIARANNTDTGLAAGVFTNDIRRAHRVIHQIQ 434 Query: 440 AGTCYINNYNVSPVELPFGGYKKSGFGRENGRVTIEYYSQLKTVCVEMGDVESAF 494 AG C+IN+Y SP E+P GGYK SG GRENGR TI +Y+Q+K+V V M D+++ F Sbjct: 435 AGICWINSYGASPAEMPVGGYKLSGIGRENGRETIAHYTQIKSVYVGMEDLDAPF 489 Lambda K H 0.319 0.136 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 754 Number of extensions: 44 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 489 Length adjustment: 34 Effective length of query: 460 Effective length of database: 455 Effective search space: 209300 Effective search space used: 209300 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory