Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate GFF2064 HP15_2020 succinate-semialdehyde dehydrogenase I
Query= BRENDA::P51650 (523 letters) >FitnessBrowser__Marino:GFF2064 Length = 489 Score = 572 bits (1473), Expect = e-167 Identities = 272/481 (56%), Positives = 369/481 (76%), Gaps = 3/481 (0%) Query: 45 DLLRGDSFVGGRWLPTPA--TFPVYDPASGAKLGTVADCGVPEARAAVRAAYDAFSSWKE 102 +LLR +++ G+W+ + TF V DPA+G +L TV D +ARAA+ AA A+ +W+ Sbjct: 9 ELLREQAYINGQWITAKSGKTFAVNDPANGEQLATVPDMDDTDARAAIEAASAAWPAWRS 68 Query: 103 ISVKERSSLLRKWYDLMIQNKDELAKIITAESGKPLKEAQGEILYSAFFLEWFSEEARRV 162 KER+++LRKW++L++ N+++LA+++TAE GKPL E++GE+ Y A F+EWF+EEA+R Sbjct: 69 TPAKERANILRKWFNLLMANQEDLARLMTAEQGKPLAESRGEVGYGASFIEWFAEEAKRA 128 Query: 163 YGDIIYTSAKDKRGLVLKQPVGVASIITPWNFPSAMITRKVGAALAAGCTVVVKPAEDTP 222 YGD+I KDKR +V+KQPVGV + ITPWNFP AMITRKV ALAAGC VVVKPAEDTP Sbjct: 129 YGDVIPGHGKDKRIVVIKQPVGVVAAITPWNFPIAMITRKVAPALAAGCPVVVKPAEDTP 188 Query: 223 YSALALAQLANQAGIPPGVYNVIPCSRTKAKEVGEVLCTDPLVSKISFTGSTATGKILLH 282 SALA+ LA +AG+P G+ N+I CS+ A VG L +P+V K+SFTGST GK+L+ Sbjct: 189 LSALAITALAEEAGVPAGLINIITCSKPNAVSVGSELTGNPIVRKVSFTGSTPVGKLLMR 248 Query: 283 HAANSVKRVSMELGGLAPFIVFDSANVDQAVAGAMASKFRNAGQTCVCSNRFLVQRGIHD 342 A+++VK+VS+ELGG APFIVFD A++D AVAG MASK+RN GQTCVC+NR VQ G++D Sbjct: 249 QASDTVKKVSLELGGNAPFIVFDDADLDAAVAGLMASKYRNTGQTCVCANRVYVQAGVYD 308 Query: 343 SFVTKFAEAMKKSLRVGNGFEEGTTQGPLINEKAVEKVEKHVNDAVAKGATVVTGGKRHQ 402 +F K A+ K + VG G E T QGPLIN+ A+ KV++H+ DA +KGA V GG+ H Sbjct: 309 AFAEKLKAAVSKMV-VGPGLEGETQQGPLINDAALAKVKRHIEDATSKGAKVALGGRAHS 367 Query: 403 SGGNFFEPTLLSNVTRDMLCITEETFGPVAPVIKFDKEEEAVAIANAADVGLAGYFYSQD 462 GG FFEPT+L++ T++ML EETFGPVAP+ KF+ ++EA+A+AN ++ GL+ YFYS++ Sbjct: 368 LGGTFFEPTILTHATQEMLIAREETFGPVAPLFKFETDDEAIAMANDSEFGLSAYFYSRN 427 Query: 463 PAQIWRVAEQLEVGMVGVNEGLISSVECPFGGVKQSGLGREGSKYGIDEYLEVKYVCYGG 522 ++WRVAE+LE GM+GVNEG+IS+ PFGGVK+SGLGREGS YG+DEY+E+KY+C GG Sbjct: 428 IHRVWRVAEELESGMIGVNEGIISTEVAPFGGVKESGLGREGSHYGLDEYMELKYLCLGG 487 Query: 523 L 523 + Sbjct: 488 M 488 Lambda K H 0.318 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 688 Number of extensions: 23 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 489 Length adjustment: 34 Effective length of query: 489 Effective length of database: 455 Effective search space: 222495 Effective search space used: 222495 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory