Align alcohol dehydrogenase (EC 1.1.1.1) (characterized)
to candidate GFF2856 HP15_2800 glucose-methanol-choline oxidoreductase
Query= BRENDA::Q76HN6 (526 letters) >lcl|FitnessBrowser__Marino:GFF2856 HP15_2800 glucose-methanol-choline oxidoreductase Length = 537 Score = 548 bits (1413), Expect = e-160 Identities = 286/538 (53%), Positives = 363/538 (67%), Gaps = 14/538 (2%) Query: 1 MEFDYLIVGAGSAGCVLANRLSADPSVTVCLLEAGPEDRSPLIHTPLGLAAILPTRHV-- 58 M FDY+IVG GSAG V+A RLS DP V+VCLLEAG + L P G+ AI+P Sbjct: 1 MIFDYIIVGGGSAGAVMAARLSEDPDVSVCLLEAGGKGDHLLTRAPAGVVAIMPGHGKIN 60 Query: 59 NWAFKTTPQPGLGGRVGYQPRGKVLGGSSSINGMIYIRGHQDDFNDWQALGNEGWGFDDV 118 NWA T QP L GR G+QPRG+ LGGSS IN M+Y+RGH D++ W LG +GWG+DDV Sbjct: 61 NWALNTEQQPELAGRRGFQPRGRGLGGSSLINAMLYVRGHSADYDGWAELGCDGWGWDDV 120 Query: 119 LPYFRKSEMHHGGSSEYHGGDGELYV-SPANRHAASEAFVESALRAGHSYNPDFNGATQE 177 LPYFRK+E H GG+SEYHG DG L+V + SEAF+E+A G+ + DFN E Sbjct: 121 LPYFRKAECHEGGASEYHGADGPLHVCKQRSPRPISEAFIEAAKERGYPASEDFNTGDNE 180 Query: 178 GAGYYDVTI-----RDGRRWSTATAFLKPV-RHRSNLTVLTHTHVESIVLLGKQATGVQA 231 G G ++VT R+G R STA A+L P+ R+NL V+T I+ GK+A+GV+ Sbjct: 181 GVGLFEVTQFHDTERNGERCSTAAAYLYPIIEQRNNLKVVTGARATRILFNGKRASGVEY 240 Query: 232 LIKGSRVHLRARKEVILSAGAFGSPHLLMLSGIGSAAELEPQGIAPRHELPGVGQNLQDH 291 +KG + A +EVILSAGAFGSP LL LSG+G+ ++ P GI HELPGVG+NLQDH Sbjct: 241 RLKGQSLTASANREVILSAGAFGSPQLLQLSGVGNPDDILPHGIPMVHELPGVGRNLQDH 300 Query: 292 ADVVLCYKSNDTSLLGFSLSGGVKMGKAMFDYARHRNGPVASNCAEAGAFLKTDPGLERP 351 D +L YKS DT GFSL+G M + + G +AS AE AFLK+DP ++P Sbjct: 301 LDFILAYKSADTDNFGFSLTGMKNMLRHSLQWRTDGTGMIASPFAEGAAFLKSDPEQDKP 360 Query: 352 DIQLHSVIGTVDDHNRKLHWGHGFSCHVCVLRPKSIGSVGLASPDPRKAPRIDPNFLAHD 411 D+QLH V+ V+DH RKLHWGHGFSCHVC LRPKS G V L S DP P IDPN+L+ Sbjct: 361 DLQLHFVVSIVEDHARKLHWGHGFSCHVCNLRPKSRGRVFLLSADPMADPGIDPNYLSDP 420 Query: 412 DDVATLLKGYRITRDIIAQTPMASFGLRDMYSAGLH---NDEQLIELLRKRTDTIYHPIG 468 DD+ +KG +ITR+I+ ++ + +M+ G+H +DE+ +R R DTIYHP+G Sbjct: 421 DDLNLTIKGAKITREILEGPALSPYRQSEMF--GVHDGMSDEEWERHIRARADTIYHPVG 478 Query: 469 TCKMGQDEMAVVDSQLRVHGIEGLRVVDASIMPTLVGGNTNAAAIMIAERAAEWIAHG 526 TCKMG D++AVVDS L+VHG+EGLRVVDAS+MPTL+GGNTNA IMIAE+ A+ I G Sbjct: 479 TCKMGIDDLAVVDSSLKVHGLEGLRVVDASVMPTLIGGNTNAPTIMIAEKNADTIRTG 536 Lambda K H 0.319 0.137 0.419 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 950 Number of extensions: 34 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 526 Length of database: 537 Length adjustment: 35 Effective length of query: 491 Effective length of database: 502 Effective search space: 246482 Effective search space used: 246482 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory