Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate GFF3421 HP15_3363 dihydroxy-acid dehydratase
Query= SwissProt::B5ZZ34 (579 letters) >FitnessBrowser__Marino:GFF3421 Length = 562 Score = 325 bits (832), Expect = 4e-93 Identities = 204/549 (37%), Positives = 309/549 (56%), Gaps = 27/549 (4%) Query: 28 RGWLKNQGYPHDLFDGRPVIGILNTWSDMTPCNGHLRELAEKVKAGVWEAGGFPLEVPVF 87 R L+ G+ + F +P IGI +TWS++TPCN H+ +LAE+ AG EAGG L Sbjct: 27 RAMLRAVGFTDEDFK-KPQIGIASTWSNLTPCNMHINQLAEESAAGADEAGGKSLIFNTI 85 Query: 88 SASENTFRPT-----AMMYRNLAALAVEEAIRGQPMDGCVLLVGCDKTTPSLLMGAASCD 142 + S+ T +++ R + A ++E + DG V + GCDK P +MG A + Sbjct: 86 TISDGIANGTEGMKYSLVSREVIADSIETVAGCEGFDGLVAIGGCDKNMPGCMMGLARLN 145 Query: 143 LPSIVVTGGPMLNGYFRGERVGSGTHLWKFSEMVKA---GEMTQAEFLEAEASMSRSSGT 199 PS+ V GG ++ G + T + E V A G++ E + E + G+ Sbjct: 146 RPSVFVYGGTIMPGE-------NHTDIISVFEAVGAHARGDLDLIEVKQIEETAIPGPGS 198 Query: 200 CNTMGTASTMASMAEALGMALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDDLKPSEIMT 259 C M TA+TMAS EA+GM+L G++A V + + G ++ +++ D+KPS+IMT Sbjct: 199 CGGMYTANTMASAIEAMGMSLPGSSAQNAVSETKAEDCRGAGAAVLNLLEKDIKPSDIMT 258 Query: 260 KQAFENAIRTNAAIGGSTNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPSGKYL 319 ++AFENAI A+GGSTNAV+HLLA+A VG+DL L+D+ G+ VP + +L PSG Y+ Sbjct: 259 RKAFENAITVVIALGGSTNAVLHLLAMASTVGVDLELEDFVEIGKRVPVLADLRPSGHYM 318 Query: 320 MEEFFYAGGLPVVLKRLGEAGLLHKDALTVSGETVWDEVKDVVNWNE--DVILPAEKALT 377 M E GG+ ++K L + GLLH D LTV+G+T+ + + DV + E D+I + + Sbjct: 319 MSELVAIGGIQPLMKMLLDRGLLHGDCLTVTGQTLAENLADVDPYPEGQDIIHAFDNPIK 378 Query: 378 SSGGIVVLRGNLAPKGAVLK-PSAASPHLLVHKGRAVVFEDIDDYKAKINDDNLDIDENC 436 + + +L GNLAP GAV K H GRA VF ++ + +I D + + Sbjct: 379 ADSHLRILFGNLAPTGAVAKITGKEGTHF---TGRARVFHSEEEAQERILDGTVVAGD-- 433 Query: 437 IMVMKNCGPKGYPGMAEVGNMGLPPKVLKKGI-LDMVRISDARMSGTAYGTVVLHTSPEA 495 ++V++ GPKG PGM E+ + ++ KG+ D+ I+D R SG ++G VV H +PEA Sbjct: 434 VLVIRYEGPKGGPGMREM--LSPTSAIMGKGLGSDVALITDGRFSGGSHGFVVGHITPEA 491 Query: 496 AVGGPLAVVKNGDMIELDVPNRRLHLDISDEELARRLAEWQPNHDLPTSGYAFLHQQHVE 555 A GGP+A+V++GD I +D + R+ LD+SD+EL RR WQ T G + + V Sbjct: 492 AEGGPIALVEDGDTITIDAVSNRIELDVSDQELERRRQAWQAPPPRFTRGTLAKYSRTVS 551 Query: 556 GADTGADLD 564 A GA D Sbjct: 552 SASKGAVTD 560 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 860 Number of extensions: 46 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 562 Length adjustment: 36 Effective length of query: 543 Effective length of database: 526 Effective search space: 285618 Effective search space used: 285618 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory