GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gntB in Marinobacter adhaerens HP15

Align TRAP-type large permease component (characterized, see rationale)
to candidate GFF4134 HP15_4074 C4-dicarboxylate transport system (permease large protein)

Query= uniprot:Q930R2
         (425 letters)



>FitnessBrowser__Marino:GFF4134
          Length = 423

 Score =  238 bits (608), Expect = 2e-67
 Identities = 138/411 (33%), Positives = 213/411 (51%), Gaps = 2/411 (0%)

Query: 10  LLGAMAIGVPVAFSLMFCGVV--LMWYMGMFNTQIIAQNMIAGADTFTLLAIPFFILAGE 67
           ++G + +G P+   L+   VV  +M + G        Q M+ G    +L+A+P FILA +
Sbjct: 5   MIGLLLLGFPMMVPLITGAVVGFVMMFDGFGQMGTFVQQMMGGIRPASLIAVPMFILAAD 64

Query: 68  LMNAGGLSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAAILIPMMA 127
           +M  G  + R+I+  +A +GH++GGL I    +  +  ++SGS  A   A+ + L P + 
Sbjct: 65  IMTRGQSADRLINMVMAFIGHVKGGLAISTATSCTLFGAVSGSTQATVVAVGSPLRPKLL 124

Query: 128 KAGYNVPRSAGLIAAGGVIAPVIPPSMAFIVFGVAANVSITQLFMAGIVPGLIMGIALVA 187
           KAGY+   S  LI     IA +IPPS+ FI++GV +  SI +LF+AGI PG+++      
Sbjct: 125 KAGYSDSFSLALIINSSDIAFLIPPSIGFIIYGVISETSIAELFIAGIGPGIMILFMFSI 184

Query: 188 TWLLVVRKDDIQPLPRTPMKERVGATGRALWALGMPVIILGGIKAGVVTPTEAAVVAAVY 247
             L+    + +    ++   +R  A   ALW L  PVII+GGI  G+ +PTEAA V  +Y
Sbjct: 185 YCLIYAHVNKLPTEEKSTWGQRAVAMREALWPLFFPVIIVGGIYGGIFSPTEAAAVCVLY 244

Query: 248 ALFVGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIPSEITGFISP 307
           A  +  V++R LK  D+  +       TAV+  LV      SW+I+ A IP  I   +  
Sbjct: 245 AFLLEFVVFRSLKLADIYRIAKSTGLITAVVFILVAVGTGFSWIISFAQIPQAILDSVGI 304

Query: 308 LIDRPTLLMFVIMLVVLVVGTALDLTPTILILTPVLMPIIKQAGIDPVYFGVLFIMNTCI 367
               P  +M  I +   +    +D    IL+LTP+  P I+ +G+DPV  GVL  +   I
Sbjct: 305 SDMGPVGVMITICVAFFIACMFVDPIVVILVLTPIFAPAIQASGLDPVLVGVLITLQVAI 364

Query: 368 GLLTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFPDIVI 418
           G  TPP G  +     + + P  +VI G  PF+   I    LL+ FP I +
Sbjct: 365 GSATPPFGCDIFTAIAIFKRPYLEVIRGTPPFVFMLIAAAGLLIAFPQIAL 415


Lambda     K      H
   0.331    0.145    0.430 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 456
Number of extensions: 14
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 423
Length adjustment: 32
Effective length of query: 393
Effective length of database: 391
Effective search space:   153663
Effective search space used:   153663
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.9 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory