Align Phosphogluconate dehydratase; EC 4.2.1.12; 6-phosphogluconate dehydratase (uncharacterized)
to candidate GFF3421 HP15_3363 dihydroxy-acid dehydratase
Query= curated2:P31961 (608 letters) >FitnessBrowser__Marino:GFF3421 Length = 562 Score = 216 bits (551), Expect = 2e-60 Identities = 169/529 (31%), Positives = 249/529 (47%), Gaps = 54/529 (10%) Query: 91 IKQALHEIGSVGQFAGGVP------AMCDGVTQGEPGMELSLASRDVIAMSTAIALSHNM 144 I Q E + AGG + DG+ G GM+ SL SR+VIA S Sbjct: 61 INQLAEESAAGADEAGGKSLIFNTITISDGIANGTEGMKYSLVSREVIADSIETVAGCEG 120 Query: 145 FDAALCLGVCDKIVPGLLIGSLRFGHLPTVFVPAGPMPTGISNKEKAAVRQLF---AEGK 201 FD + +G CDK +PG ++G R P+VFV G + G ++ + +V + A G Sbjct: 121 FDGLVAIGGCDKNMPGCMMGLARLNR-PSVFVYGGTIMPGENHTDIISVFEAVGAHARGD 179 Query: 202 ATREELLASEMASYHAPGTCTFYGTANTNQLLVEVMGLHLPGASFVNPNTPLRDELTREA 261 E+ E + PG+C TANT +E MG+ LPG+S N + + E R A Sbjct: 180 LDLIEVKQIEETAIPGPGSCGGMYTANTMASAIEAMGMSLPGSSAQNAVSETKAEDCRGA 239 Query: 262 ARQASRLTPENGNYVPMAEIVDEKAIVNSVVALLATGGSTNHTLHLLAIAQAAGIQLTWQ 321 L ++ + ++I+ KA N++ ++A GGSTN LHLLA+A G+ L + Sbjct: 240 GAAVLNLLEKD---IKPSDIMTRKAFENAITVVIALGGSTNAVLHLLAMASTVGVDLELE 296 Query: 322 DMSELSHVVPTLARIYPNGQADINHFQAAGGMSFLIRQLLDGGLLHEDVQTVAGPGLRRY 381 D E+ VP LA + P+G ++ A GG+ L++ LLD GLLH D TV G L Sbjct: 297 DFVEIGKRVPVLADLRPSGHYMMSELVAIGGIQPLMKMLLDRGLLHGDCLTVTGQTLAEN 356 Query: 382 TR--EPFLEDGRLVWREGPERSLDEAILRPLDKPFSAEGGLRLMEGNLG--RGVMKVSAV 437 +P+ E + I+ D P A+ LR++ GNL V K++ Sbjct: 357 LADVDPYPE--------------GQDIIHAFDNPIKADSHLRILFGNLAPTGAVAKITGK 402 Query: 438 APEHQVVEAPVRIFHDQASLAAAFKAGELERDLVAVVRFQGPRAN-GMPELHKLTPFLGV 496 H A R+FH + G + V V+R++GP+ GM E+ L+P + Sbjct: 403 EGTHFTGRA--RVFHSEEEAQERILDGTVVAGDVLVIRYEGPKGGPGMREM--LSPTSAI 458 Query: 497 L-QDRGFKVALVTDGRMSGASGKVPAAIHVSPEAIAGGPLARLRDGDRVRVDGVNGELRV 555 + + G VAL+TDGR SG S H++PEA GGP+A + DGD + +D V+ + + Sbjct: 459 MGKGLGSDVALITDGRFSGGSHGFVVG-HITPEAAEGGPIALVEDGDTITIDAVSNRIEL 517 Query: 556 LVDDAE-------WQARSLEPAPQDGNLGCGRELFAFMRNAMSSAEEGA 597 V D E WQA P P+ R A +SSA +GA Sbjct: 518 DVSDQELERRRQAWQA----PPPR-----FTRGTLAKYSRTVSSASKGA 557 Lambda K H 0.319 0.135 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 804 Number of extensions: 50 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 562 Length adjustment: 37 Effective length of query: 571 Effective length of database: 525 Effective search space: 299775 Effective search space used: 299775 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory