Align 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase (NADP+) (EC 1.2.1.77) (characterized)
to candidate GFF2758 HP15_2702 bifunctional aldehyde dehydrogenase/enoyl-CoA hydratase
Query= BRENDA::Q13WK4 (531 letters) >FitnessBrowser__Marino:GFF2758 Length = 685 Score = 408 bits (1049), Expect = e-118 Identities = 224/523 (42%), Positives = 313/523 (59%), Gaps = 12/523 (2%) Query: 4 LLKNHVAGQWIAGTGAGITLTDPVTGVALVRVSSEGLDLARAFSFAREDGGAALRALTYA 63 +LK+ +AGQW+ G L V G + + LD A + R+ GG L A+ + Sbjct: 7 VLKSFIAGQWV-GEKPAKALPSAVNGEIVAHTHDDTLDFKNAVEYGRKVGGKNLMAMDFQ 65 Query: 64 QRAARLADIVKLLQAKRGDYYAIATANSGTTRNDSAVDIDGGIFTLSYYAKLGA-SLGEV 122 +RA L + LQ + + YA++ ++G+T+ D+ +DIDGG TL YA +G L Sbjct: 66 ERALALKAMALYLQEHKKELYALSM-HTGSTKGDNGIDIDGGFGTLFSYASMGRRELPSG 124 Query: 123 HALRDGSAESLSKDRSFSAQHVLSPTRGVALFINAFNFPSWGLWEKAAPALLSGVPVIVK 182 + + +G L K+ F+ H+L P GVA+ I+A+NFP WG+ EK AP L+G+P IVK Sbjct: 125 NVVHEGPVTPLGKNNHFAGTHILVPRGGVAVHIDAYNFPVWGMLEKFAPTFLAGMPSIVK 184 Query: 183 PATATAWLTQRMVADVVDAGILPPGALSIICGSSAGLLDQIRSFDVVSFTGSADTAATLR 242 PAT+T ++T+ V + ++G LP G+L +I GS+ L D + DVV+FTGSA TA LR Sbjct: 185 PATSTCYVTELAVRLMQESGALPEGSLQLIIGSTGDLFDHLEEQDVVTFTGSAATARKLR 244 Query: 243 AHPAFVQRGARLNVEADSLNSAILCADATPDTPAFDLFIKEVVREMTVKSGQKCTAIRRA 302 HP + R N EADSLNSAIL D TP+ FD+F+KE+ REMT K+GQKCTAIRR Sbjct: 245 NHPNIINRSIPFNAEADSLNSAILAPDVTPEHEEFDVFVKEIRREMTAKAGQKCTAIRRI 304 Query: 303 FVPEAALEPVLEALKAKLAKITVGNPRNDAVRMGSLVSREQYENVLAGIAALREEAVLAY 362 FVP+ + V + LK +L+KITVG+P + VRMG+L S +Q E+V A I L + + L Sbjct: 305 FVPKDQVNAVCDKLKEQLSKITVGDPSVEGVRMGALASIDQLEDVKANIQELLKTSELVV 364 Query: 363 DSSAVPLIDAD-ANIAACVAPHLFVVNDPDNATLLHDVEVFGPVASVAPYRVTTDTNALP 421 D A + PHL + +P+N HD+E FGPVA+V PY D Sbjct: 365 GGEGNFKATGDGTEKGAFIEPHLLLCRNPENGCGAHDIEAFGPVATVIPYETIDD----- 419 Query: 422 EAHAVALARRGQGSLVASIYSNDDAHLGRLALELADSHGRVHAISPSVQHSQTGHGNVMP 481 AV L RG+GSLV ++ + D A GR+A LA HGR+H + TGHG+ +P Sbjct: 420 ---AVELCSRGRGSLVTTLTTRDPAIAGRIAPLLAAFHGRLHLLDAEAAKESTGHGSPLP 476 Query: 482 MSLHGGPGRAGGGEELGGLRALAFYHRRSAIQAASAAIGTLTQ 524 M HGGPGRAGGGEELGG+RA+ Y +R+AIQ + + + +T+ Sbjct: 477 MLKHGGPGRAGGGEELGGIRAVHHYLQRTAIQGSPSMLAAVTR 519 Lambda K H 0.318 0.132 0.379 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 750 Number of extensions: 39 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 531 Length of database: 685 Length adjustment: 37 Effective length of query: 494 Effective length of database: 648 Effective search space: 320112 Effective search space used: 320112 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory