Align propionyl-CoA carboxylase α subunit (EC 6.4.1.3) (characterized)
to candidate GFF1025 HP15_1004 3-methylcrotonyl CoA carboxylase, beta subunit
Query= metacyc::MONOMER-17283 (535 letters) >FitnessBrowser__Marino:GFF1025 Length = 535 Score = 745 bits (1924), Expect = 0.0 Identities = 363/535 (67%), Positives = 428/535 (80%) Query: 1 MSIIHSHIQPNSPDFQANFAYHQSLAADLRERLAQIRQGGGAEQRRRHEERGKLFVRDRI 60 M+I+ S I P S +FQAN ADLR++++ I+QGGG + RH RGKL R+RI Sbjct: 1 MTILQSKINPRSEEFQANQESMAQAVADLRDKVSTIQQGGGPSYQERHIARGKLLPRERI 60 Query: 61 DTLIDPDSSFLEIGALAAYNVYDEEVPAAGIVCGIGRVAGRPVMIIANDATVKGGTYFPL 120 + L+D S FLEIG AAYNVYDEEVPAAG++ G+GRV+G MIIANDATVKGG+Y+PL Sbjct: 61 NRLLDDGSPFLEIGQFAAYNVYDEEVPAAGVIAGVGRVSGTECMIIANDATVKGGSYYPL 120 Query: 121 TVKKHLRAQEIARENRLPCIYLVDSGGAYLPLQSEVFPDRDHFGRIFYNQAQMSAEGIPQ 180 TVKKHLRAQEIA +NRLPCIYLVDSGGA LP Q EVFPDR+HFGRIFYNQA+MSA+ IPQ Sbjct: 121 TVKKHLRAQEIALQNRLPCIYLVDSGGANLPRQDEVFPDREHFGRIFYNQARMSADDIPQ 180 Query: 181 IACVMGSCTAGGAYVPAMSDEVVIVKGNGTIFLGGPPLVKAATGEEVTAEELGGADVHTR 240 IA VMG CTAGGAYVPAM+DE +IV+ GTIFL GPPLVKAATGE VTAE+LGGADVH + Sbjct: 181 IAVVMGLCTAGGAYVPAMADESIIVRNQGTIFLAGPPLVKAATGEVVTAEDLGGADVHCK 240 Query: 241 ISGVADYFANDDREALAIVRDIVAHLGPRQRANWELRDPEPPRYDPREIYGILPRDFRQS 300 ISGVAD++A +D AL I R V++L R+ + E+R P+ P YD EIYGI+ D R+ Sbjct: 241 ISGVADHYAENDAHALEIARRSVSNLNRRKPTDVEIRKPKAPLYDAEEIYGIVGTDLRKQ 300 Query: 301 YDVREVIARIVDGSRLHEFKTRYGTTLVCGFAHIEGFPVGILANNGILFSESALKGAHFI 360 +DVR+VIAR VDGS EFK YG TLV GFAHI G+PVGI+ANNGILFSE+A KGAHF+ Sbjct: 301 FDVRDVIARTVDGSEFDEFKRYYGQTLVTGFAHIHGYPVGIIANNGILFSEAAQKGAHFV 360 Query: 361 ELCCARNIPLVFLQNITGFMVGKQYENGGIAKDGAKLVTAVSCANVPKFTVIIGGSFGAG 420 ELCC RNIPL+FLQNITGFMVG++YE+ GIAK GAK+V AV+CANVPK TV+IGGSFGAG Sbjct: 361 ELCCQRNIPLLFLQNITGFMVGQKYESEGIAKHGAKMVMAVACANVPKITVLIGGSFGAG 420 Query: 421 NYGMCGRAYQPRQLWMWPNARISVMGGTQAANVLLTIRRDNLRARGQDMTPEEQERFMAP 480 NYGMCGRAY P LWMWPNARISVMGG QAA V+ T+RR+ + +GQ+ + EE+ F P Sbjct: 421 NYGMCGRAYSPDFLWMWPNARISVMGGEQAAGVMATVRREGMERKGQEWSAEEEAEFKKP 480 Query: 481 ILAKYEQEGHPYYASARLWDDGVIDPVETRRVLALGLAAAAEAPVQPTRFGVFRM 535 I+ YE +GHPYYASARLWDDGVIDP +TR V+AL L+A P +PTRFGVFRM Sbjct: 481 IIDTYEHQGHPYYASARLWDDGVIDPAQTREVVALSLSATLNRPAKPTRFGVFRM 535 Lambda K H 0.322 0.139 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 966 Number of extensions: 46 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 535 Length adjustment: 35 Effective length of query: 500 Effective length of database: 500 Effective search space: 250000 Effective search space used: 250000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory