Align The fructose porter, FruA (fructose-1-P forming IIABC) (Delobbe et al. 1975) FruA is 39% identical to 4.A.2.1.1). fructose can be metabolized to Fru-1-P via this system as well as Fru-6-P by another PTS system (characterized)
to candidate GFF3783 HP15_3725 PTS system, fructose-specific IIBC component
Query= TCDB::P71012 (635 letters) >lcl|FitnessBrowser__Marino:GFF3783 HP15_3725 PTS system, fructose-specific IIBC component Length = 587 Score = 414 bits (1063), Expect = e-120 Identities = 222/468 (47%), Positives = 308/468 (65%), Gaps = 21/468 (4%) Query: 167 AGKGKILAVTACPTGIAHTFMAADALKEKAKELGVEIKVETNGSSGIKHKLTAQEIEDAP 226 AGK +I+AVTACPTG+AHTFMAA+AL A+ G +I+VET GS G + LT +EI A Sbjct: 125 AGK-RIVAVTACPTGVAHTFMAAEALTAAAQSAGHKIRVETQGSVGAQDPLTEEEIAAAD 183 Query: 227 AIIVAADKQVEMERFKGKRVLQVPVTAGIRRPQELIEKAMNQDAPIYQGSGGGSAASNDD 286 +I+A D +V+ RF GKRV + A +++P + I A+ Q + G Sbjct: 184 VVILACDIEVDPGRFSGKRVWRTSTGAALKKPADTIRDALEQAVVLNAGQ---------- 233 Query: 287 EEAKGKSGSGIGNTFYKHLMSGVSNMLPFVVGGGILVAISFFWGIHSADPNDPSYNTFAA 346 ++ G SGSG YKHL++GVS MLP VV GG+L+A+SF +GI + T AA Sbjct: 234 KKTSGASGSGEKKGPYKHLLTGVSFMLPMVVAGGLLIALSFVFGIEAFQEE----GTLAA 289 Query: 347 ALNFIGGDNALKLIVAVLAGFIAMSIADRPGFAPGMVGGFMATQANAGFLGGLIAGFLAG 406 AL IGG A KL++ +LAG+IA SIADRPG APGM+GGF+A + AGFLGG++AGFLAG Sbjct: 290 ALMQIGGGTAFKLMIPLLAGYIAWSIADRPGLAPGMIGGFLAGELGAGFLGGIVAGFLAG 349 Query: 407 YVVILLKKVFTFIPQSLDGLKPVLIYPLFGIFITGVLMQFVVNTPVAAFMNFLTNWLESL 466 YV + + +P+S++ LKP+LI PL +TG+ M +V+ P+AA M LT +LE + Sbjct: 350 YVARFISQKLP-MPESIESLKPILIIPLLASLVTGLGMIYVIGEPMAAIMGALTGFLEGM 408 Query: 467 GTGNLVLMGIILGGMMAIDMGGPLNKAAFTFGIAMID--AGNYAPHAAIMAGGMVPPLGI 524 GT N +L+G ILG MM D+GGP+NKAA+TFG+ ++ +G AP AAIMA GMVP +G+ Sbjct: 409 GTTNAILLGGILGAMMCFDLGGPVNKAAYTFGVGLLSEGSGGSAPMAAIMAAGMVPAIGM 468 Query: 525 ALATTIFRNKFTQRDREAGITCYFMGAAFVTEGAIPFAAADPLRVIPAAVVGAAVAGGLT 584 +A+ I R KF + +R+AG + +G F++EGAIPF A DPLRVIP ++G A+ G L+ Sbjct: 469 GVASFIARRKFAEAERQAGRASFVLGLCFISEGAIPFMAKDPLRVIPVCMIGGAITGALS 528 Query: 585 EFFRVTLPAPHGGVFVAFITN---HPMLYLLSIVIGAVVMAIILGIVK 629 F V L APHGG+FV I N + YL++I +G++V+ ++K Sbjct: 529 MLFTVKLMAPHGGLFVLAIPNAVSAVLPYLIAIAVGSLVIGFGYALLK 576 Score = 67.4 bits (163), Expect = 2e-15 Identities = 35/101 (34%), Positives = 56/101 (55%), Gaps = 1/101 (0%) Query: 172 ILAVTACPTGIAHTFMAADALKEKAKELGVEIKVETNGSSG-IKHKLTAQEIEDAPAIIV 230 ++ VTACP G+A F+AA AL+ A G + +T G G +K + I+ A +I Sbjct: 3 LIIVTACPQGVATRFLAARALERAANRRGWSVTTDTRGPDGKTDNKPSEAAIQQADLVIA 62 Query: 231 AADKQVEMERFKGKRVLQVPVTAGIRRPQELIEKAMNQDAP 271 A V ++ + GKR+LQ+PVTA + P ++ +A + P Sbjct: 63 AVGIPVNLDVYAGKRLLQIPVTAALPDPDAILTRAQAEATP 103 Lambda K H 0.320 0.137 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 885 Number of extensions: 34 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 635 Length of database: 587 Length adjustment: 37 Effective length of query: 598 Effective length of database: 550 Effective search space: 328900 Effective search space used: 328900 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory