Align 2-aminomuconic semialdehyde dehydrogenase; Aldehyde dehydrogenase 12; Aldehyde dehydrogenase family 8 member A1; EC 1.2.1.32 (characterized)
to candidate GFF1133 HP15_1111 betaine aldehyde dehydrogenase
Query= SwissProt::Q9H2A2 (487 letters) >lcl|FitnessBrowser__Marino:GFF1133 HP15_1111 betaine aldehyde dehydrogenase Length = 493 Score = 417 bits (1071), Expect = e-121 Identities = 213/491 (43%), Positives = 318/491 (64%), Gaps = 9/491 (1%) Query: 3 GTNALLMLENFIDGKFLP-CSSYI-DSYDPSTGEVYCRVPNSGKDEIEAAVKAAREAFPS 60 G A+ +++ I+G+++ CSS + D+ +P+ G++ +V +G++E++AAVKAAR A Sbjct: 4 GKAAMKEIKHHINGQYVSSCSSRLFDNVNPANGKIISKVHEAGREEVDAAVKAARAALRG 63 Query: 61 -WSSRSPQERSRVLNQVADLLEQSLEEFAQAESKDQGKTLALARTMDIPRSVQNFRFFAS 119 W + ER+ +L++VAD + +EF + E D GK ++A +DIPR NF+ FA Sbjct: 64 PWGKMTLDERTSILHKVADGINARFDEFLEGECLDTGKPKSMASHIDIPRGAANFKVFAD 123 Query: 120 SSLHHTSECTQM---DHLGCMHYTVRAPVGVAGLISPWNLPLYLLTWKIAPAMAAGNTVI 176 + +E +M D G ++Y VR P GV G+ISPWNLPL L+TWK+ PA+A GNTV+ Sbjct: 124 MIKNVPTESFEMPTPDGTGALNYAVRRPKGVIGVISPWNLPLLLMTWKVGPALACGNTVV 183 Query: 177 AKPSELTSVTAWMLCKLLDKAGVPPGVVNIVFGTG-PRVGEALVSHPEVPLISFTGSQPT 235 KPSE T T +L +++ +AGVP GV N+V G G G L HP+V I+FTG T Sbjct: 184 VKPSEETPTTTTLLGEVMKEAGVPDGVFNVVHGFGGDSAGAFLTEHPQVDGITFTGEIGT 243 Query: 236 AERITQLSAPHCKKLSLELGGKNPAIIFEDANLDECIPATVRSSFANQGEICLCTSRIFV 295 E I + +A + +SLELGGKN ++F D ++D+ I T+RS+FAN G++CL T R++V Sbjct: 244 GEVIMKAAAKGIRDISLELGGKNAGVVFADCDIDKAIEGTMRSAFANCGQVCLGTERVYV 303 Query: 296 QKSIYSEFLKRFVEATRKWKVGIPSDPLVSIGALISKAHLEKVRSYVKRALAEGAQIWCG 355 ++SI+ EF+ R EA K+G P D +G L+S H EKV SY ++A+ +GA + G Sbjct: 304 ERSIFDEFVGRLKEAAEGMKIGPPDDAEADMGPLVSLNHREKVLSYYQKAVDDGATVVTG 363 Query: 356 EGVDKLSLPARNQAGYFMLPTVITDIKDESCCMTEEIFGPVTCVVPFDSEEEVIERANNV 415 GV ++ P G ++ PT+ T + ++S +T+EIFGP + PFD+EEE IE AN++ Sbjct: 364 GGVPEM--PEALAGGAWVQPTIWTGLPEDSAVITDEIFGPCCHIRPFDTEEEAIELANSL 421 Query: 416 KYGLAATVWSSNVGRVHRVAKKLQSGLVWTNCWLIRELNLPFGGMKSSGIGREGAKDSYD 475 YGLA+ +WS N+ R HRVA ++++G++W N W +R+L PFGG K SGIGREG S + Sbjct: 422 PYGLASAIWSENITRAHRVAGQIEAGIIWVNSWFLRDLRTPFGGSKQSGIGREGGVHSLE 481 Query: 476 FFTEIKTITVK 486 F+TE+K I VK Sbjct: 482 FYTEMKNICVK 492 Lambda K H 0.319 0.133 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 625 Number of extensions: 26 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 487 Length of database: 493 Length adjustment: 34 Effective length of query: 453 Effective length of database: 459 Effective search space: 207927 Effective search space used: 207927 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory