Align 3-hydroxypropionate dehydrogenase (EC 1.1.1.59) (characterized)
to candidate GFF2856 HP15_2800 glucose-methanol-choline oxidoreductase
Query= metacyc::MONOMER-15202 (579 letters) >lcl|FitnessBrowser__Marino:GFF2856 HP15_2800 glucose-methanol-choline oxidoreductase Length = 537 Score = 373 bits (957), Expect = e-107 Identities = 227/548 (41%), Positives = 299/548 (54%), Gaps = 25/548 (4%) Query: 36 FDYIVVGAGTAGCLLANRLSADPANRVLLIEAGGRDNYHWIHIPVGYLYCI--NNPRTDW 93 FDYI+VG G+AG ++A RLS DP V L+EAGG+ ++ P G + + + +W Sbjct: 3 FDYIIVGGGSAGAVMAARLSEDPDVSVCLLEAGGKGDHLLTRAPAGVVAIMPGHGKINNW 62 Query: 94 RFRTEPDPGLNGRSLIYPRGKTLGGCSSINGMLYLRGQARDYDGWAELTGDDAWRWDNCL 153 TE P L GR PRG+ LGG S IN MLY+RG + DYDGWAEL G D W WD+ L Sbjct: 63 ALNTEQQPELAGRRGFQPRGRGLGGSSLINAMLYVRGHSADYDGWAEL-GCDGWGWDDVL 121 Query: 154 PDFMRHEDHYRLDEGGDADPDHYKFHGHGGEWRIEKQRLKWQVLADFATAAVEAGVPRTR 213 P F + E H EGG ++ +HG G + KQR + F AA E G P + Sbjct: 122 PYFRKAECH----EGGASE-----YHGADGPLHVCKQRSPRPISEAFIEAAKERGYPASE 172 Query: 214 DFNRGDNEGVDAFEVNQ-----RSGWRWNASKAFLRGV-EQRGNLTVWHSTQVLKLDFAS 267 DFN GDNEGV FEV Q R+G R + + A+L + EQR NL V + ++ F Sbjct: 173 DFNTGDNEGVGLFEVTQFHDTERNGERCSTAAAYLYPIIEQRNNLKVVTGARATRILF-- 230 Query: 268 GEGSEPRCCGVTVERAGKKVVTTARCEVVLSAGAIGSPQLLQLSGIGPTALLAEHAIPVV 327 + R GV G+ + +A EV+LSAGA GSPQLLQLSG+G + H IP+V Sbjct: 231 ---NGKRASGVEYRLKGQSLTASANREVILSAGAFGSPQLLQLSGVGNPDDILPHGIPMV 287 Query: 328 ADLPGVGENLQDHLQIRSIYKVKGAKTLNTMANSLIGKAKIGLEYILKRSGPMSMAPSQL 387 +LPGVG NLQDHL YK + + L++ +G ++ ++ Sbjct: 288 HELPGVGRNLQDHLDFILAYKSADTDNFGFSLTGMKNMLRHSLQWRTDGTGMIASPFAEG 347 Query: 388 CIFTRSSKEYEHPNLEYHVQPLSLEAFGQPLHDFPAITASVCNLNPTSRGTVRIKSGNPR 447 F +S E + P+L+ H +E + LH + VCNL P SRG V + S +P Sbjct: 348 AAFLKSDPEQDKPDLQLHFVVSIVEDHARKLHWGHGFSCHVCNLRPKSRGRVFLLSADPM 407 Query: 448 QAPAISPNYLSTEEDRQVAADSLRVTRHIASQPAFAKYDPEEFKPGVQYQSDEDLARLAG 507 P I PNYLS +D + ++TR I PA + Y E SDE+ R Sbjct: 408 ADPGIDPNYLSDPDDLNLTIKGAKITREILEGPALSPYRQSEMFGVHDGMSDEEWERHIR 467 Query: 508 DIGTTIFHPVGTAKMGRDDDPMAVVDSHLRVRGVTGLRVVDASIMPTITSGNTNSPTLMI 567 TI+HPVGT KMG DD +AVVDS L+V G+ GLRVVDAS+MPT+ GNTN+PT+MI Sbjct: 468 ARADTIYHPVGTCKMGIDD--LAVVDSSLKVHGLEGLRVVDASVMPTLIGGNTNAPTIMI 525 Query: 568 AEKAAGWI 575 AEK A I Sbjct: 526 AEKNADTI 533 Lambda K H 0.318 0.135 0.418 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 947 Number of extensions: 50 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 537 Length adjustment: 36 Effective length of query: 543 Effective length of database: 501 Effective search space: 272043 Effective search space used: 272043 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory