Align Propionyl-CoA carboxylase, biotin carboxylase and biotin-carboxyl carrier subunit; PCC; EC 6.4.1.3; EC 6.3.4.14 (characterized)
to candidate GFF3280 HP15_3222 acetyl-CoA carboxylase biotin carboxylase subunit
Query= SwissProt::I3R7G3 (601 letters) >lcl|FitnessBrowser__Marino:GFF3280 HP15_3222 acetyl-CoA carboxylase biotin carboxylase subunit Length = 448 Score = 442 bits (1138), Expect = e-128 Identities = 223/445 (50%), Positives = 308/445 (69%), Gaps = 2/445 (0%) Query: 1 MFSKVLVANRGEIAVRVMRACEELGVRTVAVYSEADKHGGHVRYADEAYNIGPARAADSY 60 M KVL+ANRGEIA+R++RAC+ELG++TVAV+S+ D+ HVR ADE+ IGP A DSY Sbjct: 3 MLEKVLIANRGEIALRILRACKELGIKTVAVHSQVDRDLMHVRLADESVCIGPNSATDSY 62 Query: 61 LDHESVIEAARKADADAIHPGYGFLAENAEFARKVEDSEFTWVGPSADAMERLGEKTKAR 120 L+ ++I AA D+ IHPGYGFLAENA+FA +VE S F ++GP A+ + +G K A Sbjct: 63 LNIPTIISAAEVTDSVGIHPGYGFLAENADFAEQVEKSGFRFIGPKAETIRLMGNKVSAI 122 Query: 121 SLMQDADVPVVPGTTEPADSAED-VKAVADDYGYPVAIKAEGGGGGRGLKVVHSEDEVDG 179 + M A VP VPG+ P D E+ +A + GYPV IKA GGGGRG++VVHSE + Sbjct: 123 NAMIKAGVPTVPGSDGPLDDDEERTLRIAKEIGYPVMIKAASGGGGRGMQVVHSEAALLK 182 Query: 180 QFETAKREGEAYFDNASVYVEKYLEAPRHIEVQILADEHGNVRHLGERDCSLQRRHQKVI 239 + + E + F + +VY+EK+LEAPRH+EVQ+LAD HGN HLG+RDCS+QRR+QKVI Sbjct: 183 GVQITQSEAKNAFGDPTVYLEKFLEAPRHVEVQVLADMHGNCIHLGDRDCSMQRRNQKVI 242 Query: 240 EEAPSPALSEDLRERIGEAARRGVRAAEYTNAGTVEFLVEDGEFYFMEVNTRIQVEHTVT 299 EEAP+P ++ + RER +A + Y AGT EFL +DGEFYF+E+NTR+QVEH V+ Sbjct: 243 EEAPAPNINPESRERTLKACTDACKEIGYVGAGTFEFLYQDGEFYFIEMNTRVQVEHPVS 302 Query: 300 EEVTGLDVVKWQLRVAAGEELDFSQDDVEIEGHSMEFRINAEAPEKEFAPATGTLSTYDP 359 E VTG+D+V+ QLR+A+G L ++QDD+ I GH+ME RINAE P K F P+ G + + Sbjct: 303 EMVTGVDIVREQLRIASGLPLQYTQDDIRISGHAMECRINAEDP-KTFIPSPGKVKHFHA 361 Query: 360 PGGIGIRMDDAVRQGDEIGGDYDSMIAKLIVTGSDREEVLVRAERALNEFDIEGLRTVIP 419 PGG G+R+D + G + YDS++AKLI G DR+ R + AL+E +EG++T P Sbjct: 362 PGGNGVRVDSHLYSGYTVPPYYDSLVAKLITWGDDRDIARRRMKNALDELVVEGIKTNQP 421 Query: 420 FHRLMLTDEAFREGSHTTKYLDEVL 444 HR ++ D F++ T YL++++ Sbjct: 422 LHRKLVRDGGFKQVDFTIHYLEKLM 446 Lambda K H 0.312 0.132 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 639 Number of extensions: 19 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 601 Length of database: 448 Length adjustment: 35 Effective length of query: 566 Effective length of database: 413 Effective search space: 233758 Effective search space used: 233758 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory