Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate GFF3994 HP15_3934 acetyl-CoA carboxylase biotin carboxylase subunit
Query= metacyc::MONOMER-13597 (509 letters) >lcl|FitnessBrowser__Marino:GFF3994 HP15_3934 acetyl-CoA carboxylase biotin carboxylase subunit Length = 473 Score = 414 bits (1064), Expect = e-120 Identities = 219/471 (46%), Positives = 307/471 (65%), Gaps = 7/471 (1%) Query: 6 RVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALDSYLNI 65 ++L+ANRGEIA R+ +A E+G+ ++A++SEAD+Y++H K ADEAY I K P L YLN Sbjct: 5 KLLIANRGEIAVRIARACSELGIRSVAIHSEADEYSLHVKKADEAYQISKDP-LSGYLNP 63 Query: 66 EHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLDGKRLA 125 HI++ A + DA+HPGYGFLSENAE A E+ GITF+GPS+ + + DK ++ A Sbjct: 64 HHIVNMAVETGCDALHPGYGFLSENAELAAICEQRGITFVGPSANAISSMGDKTQARQTA 123 Query: 126 NMAGVPTAPGSDGPVTSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQDQLMDVWER 185 AGVP PGS+G + +++A+ A IGYP+M+KA SGGGG GI R DN+ +L +ER Sbjct: 124 LAAGVPVTPGSEGNLADVEDAVVQAADIGYPVMLKATSGGGGRGIRRCDNEKELRQNFER 183 Query: 186 NKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQKLIEEAP 245 A +AFG A++F+EK + PRHIE Q++ D +GN V +ER+C+IQRRNQKLIE AP Sbjct: 184 VISEATKAFGSAEVFLEKCIIEPRHIEVQILADTHGNVVHLYERDCSIQRRNQKLIELAP 243 Query: 246 SPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQVEHPTTEL 305 SP L+ +RE + + + K Y GT E D FYF+E+N R+QVEH TE Sbjct: 244 SPQLEESQREYIGDLAKRVAKQCGYVNAGTVEFLL-DHDGSFYFMEMNTRVQVEHTITEE 302 Query: 306 IFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGFVTYYRE 365 I +D++K QI++AAGE L QED++ RG A ++RINAED N F S G ++ Y Sbjct: 303 ITGVDIIKAQIRIAAGEPLGLKQEDIS--YRGFAAQFRINAEDPKNGFLPSFGRISRYYS 360 Query: 366 PTGPGVRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRALADYKIGGIKTTIE 425 GPGVR D+ + +G +PPYYDS+ +KLIV+ + I RAL D I G++TTI Sbjct: 361 AGGPGVRTDANMYTGYEIPPYYDSMCAKLIVWAMDWDELIARSRRALGDMGIYGVQTTIP 420 Query: 426 LYKWIMQDPDFQEGKFSTSYISQKTDQFVKYLRE--QEEIKAAIAAEIQSR 474 YK I++ PDFQ F+T ++ ++ Q ++Y + E I AIAA I ++ Sbjct: 421 YYKQILEHPDFQAADFNTGFV-ERNPQLLEYSSKTRPESIATAIAAAIAAQ 470 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 595 Number of extensions: 27 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 473 Length adjustment: 34 Effective length of query: 475 Effective length of database: 439 Effective search space: 208525 Effective search space used: 208525 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory