Align L-lactate permease (characterized, see rationale)
to candidate 8501125 DvMF_1861 L-lactate permease (RefSeq)
Query= uniprot:L0GFN1 (564 letters) >FitnessBrowser__Miya:8501125 Length = 569 Score = 467 bits (1202), Expect = e-136 Identities = 249/563 (44%), Positives = 353/563 (62%), Gaps = 11/563 (1%) Query: 1 MSNGLLALFAFTPILLAAIMLIGLRWPASRAMPLVFLFTAAIGLFVWDMSVNRIIASTLQ 60 MS LLAL A PIL+A ++++G+RWP++RAMPL +L + W++ I A +LQ Sbjct: 1 MSLELLALVALLPILVALVLMVGMRWPSTRAMPLAWLVCVLGAIGAWNLPAGYIAALSLQ 60 Query: 61 GLVITLGLLWIIFGAILLLNTLKHSGGITAIRAGFTTISPDRRIQAIIIAWLFGCFIEGA 120 G+V +G+L I+FGAI++L TLK+SGG+ I+ G IS D+RIQAIII ++F FIEGA Sbjct: 61 GVVTAIGVLIIVFGAIIILYTLKYSGGMETIQYGMQNISRDKRIQAIIIGYMFAAFIEGA 120 Query: 121 SGFGTPAAIAAPLLVAVGFPAMAAVLLGMLVQSTPVSFGAVGTPIVVGIN--SGLDTATI 178 +GFGTPAA+AAPLL+++GFP +AA ++ ++ S VSFGAVGTPI++G+ + L Sbjct: 121 AGFGTPAALAAPLLLSLGFPPLAAAVICLVFNSFCVSFGAVGTPILIGLKFLAPLVKDAA 180 Query: 179 GAQLVAQGSSWNAYLQQITSSVAITHAIVGTVMPLVMVLMLTRFFGKEKSWKAGFEVLPF 238 A + + ++ + I V + H + ++P+ M+ LTRF+G++KSW GF F Sbjct: 181 AANPGLNFTDFGSFAKVIGQWVTLMHGPMIFILPIFMLGFLTRFYGQKKSWAEGFAAWQF 240 Query: 239 AIFAGLAFTLPYAATGIFLGPEFPSLLGGLVGLAIVTTAARFKFLTPKTTWDFADAKEWP 298 +FA +AF +PY +GPEFPSL+GGLVGL I+ A+ F PK TWDF W Sbjct: 241 CVFAAVAFIVPYLTFAWLVGPEFPSLIGGLVGLGIIVAGAKKGFCVPKETWDFGPQSTWE 300 Query: 299 AEWLGTIEMKLDEMAARPMSAFRAWLPYVLVGAILVISRVFPQ--VTAALKSVSIAFANI 356 AEW GTI + MS F AWLPY+L+G ILV++R+ P+ + + + + +I Sbjct: 301 AEWTGTIATSTNTEFKPHMSQFMAWLPYILIGVILVLTRI-PELGLKGWMSAQKLPINDI 359 Query: 357 LGETGINAGIEPLYLPGGI-LVMVVLITFFLHGMRVSELKAAVKESSGVLLSAGFVLLFT 415 LG G++A I+ LYLPG I +V L+T LHGM+ +K A ES + + L Sbjct: 360 LGYKGVSASIDYLYLPGTIPFTLVALLTIMLHGMKGDAVKKAWSESFSKMKAPTIALFAA 419 Query: 416 VPMVRILINSGVNGAEL-----ASMPIVMARYVADSVGSIYPLLAPAVGALGAFLAGSNT 470 V +V I SGV A L SMP+ MA+ VA G+ +P+LA VG LGAF+ GSNT Sbjct: 420 VALVSIFRGSGVADAALNPNNYPSMPLAMAKTVAAFAGNAWPMLASYVGGLGAFITGSNT 479 Query: 471 VSNMMFSQFQFGVAQSLGISGAMVVATQAVGAAAGNMVAIHNVVAASATVGLLGREGSTL 530 VS+++F++FQ+GVAQ L + ++VA Q G A GNMV IHN+VA A GL+GREG L Sbjct: 480 VSDLLFAEFQWGVAQQLSLPRQIIVAAQVAGGAMGNMVCIHNIVAVCAVTGLIGREGMIL 539 Query: 531 RKTIWPTLYYVLFTGVIGLIAIY 553 ++T WP Y + G+I I + Sbjct: 540 KRTFWPFALYGIVVGIIASILCF 562 Lambda K H 0.326 0.140 0.415 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1037 Number of extensions: 50 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 564 Length of database: 569 Length adjustment: 36 Effective length of query: 528 Effective length of database: 533 Effective search space: 281424 Effective search space used: 281424 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory