Align L-arabinose ABC transporter, ATP-binding protein AraG; EC 3.6.3.17 (characterized)
to candidate 8502321 DvMF_3029 ABC transporter related (RefSeq)
Query= CharProtDB::CH_014279 (504 letters) >FitnessBrowser__Miya:8502321 Length = 537 Score = 245 bits (625), Expect = 3e-69 Identities = 160/501 (31%), Positives = 264/501 (52%), Gaps = 19/501 (3%) Query: 6 PYLSFRGIGKTFPGVKALTDISFDCYAGQVHALMGENGAGKSTLLKILSGNYAPTTGSVV 65 P + GI K+F V+A DI+ D G + AL+GENGAGKSTL+ IL+G G++V Sbjct: 28 PVVRLDGICKSFGKVRANHDITLDIRPGCIKALLGENGAGKSTLMSILAGKLRQDAGTIV 87 Query: 66 INGQEMSFSDTTAALNAGVAIIYQELHLVPEMTVAENIYLGQLPHKGGIVNRSLLNYEAG 125 ++G F+ AL AG+ ++YQ LV MTVAEN+ LGQ P ++ + + E Sbjct: 88 VDGVPTVFASPRDALRAGIGMVYQHFMLVDSMTVAENVLLGQSPDM--LLRPARMRDEVA 145 Query: 126 LQLKHLGMDIDPDTPLKYLSIGQWQMVEIAKALARNAKIIAFDEPTSSLSAREIDNLFRV 185 + G+ +DP + LS+G+ Q VEI K L R+++++ DEPT+ L+ RE D LF Sbjct: 146 ALAERYGLAVDPAARVGGLSMGERQRVEILKLLYRDSRVLILDEPTAVLTPRETDQLFEA 205 Query: 186 IRELRKEGRVILYVSHRMEEIFALSDAITVFKDGRYVKTFTDMQQVDHDALVQAMVGRDI 245 + + +G+ ++++SH+++E+ ++D I + + G V F++ + L MVGRD+ Sbjct: 206 MWRMADQGKALVFISHKLQEVLTVADEIAILRRGEVVDEFSEADVPNQTVLANRMVGRDV 265 Query: 246 GDIYGWQPRSYGEERLRLDAVKAPGVRTPISLAVRSGEIVGLFGLVGAGRSELMKGMFGG 305 + + + L ++ + G+ + +SL VR GEIV + G+ G G+ EL++ + G Sbjct: 266 VLQVDAKRLTPVDTVLSVEHLSGAGL-SDVSLQVRRGEIVAIAGVAGNGQKELVEAICGL 324 Query: 306 TQITAGQVYIDQQPIDIRKPSHAIAAGMMLCPEDRKAEGIIPVHSVRDNINISARRKHVL 365 + AG+V I +P G+ PEDR+ + DN ++ R + Sbjct: 325 ARPEAGEVRILGRPWREFFAGPPGRRGLAYIPEDRQGLATCRHLDLVDNFLLTTRNQFAK 384 Query: 366 GGCVINNGWEENNA------DHHIRSLNIKTPGAEQLIMNLSGGNQQKAILGRWLSEEMK 419 G V + E NA +++++ +I P LSGGN QK ++GR + + Sbjct: 385 G--VFLDRTEATNAVKRVVWEYNVQPGDITAPARA-----LSGGNLQKLVIGREFFRKPE 437 Query: 420 VILLDEPTRGIDVGAKHEIY-NVIYALAAQGVAVLFASSDLPEVLGVADRIVVMREGEIA 478 VI+ + PT+G+D+ A E++ ++ A + G VL + DL E L +ADRI VM G Sbjct: 438 VIVAENPTQGLDISATEEVWGRLLEARSTSG--VLLVTGDLNEALELADRIAVMYRGRFI 495 Query: 479 GELLHEQADERQALSLAMPKV 499 + + QA+ L M V Sbjct: 496 DVFDKDDTAKVQAIGLMMAGV 516 Lambda K H 0.319 0.136 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 635 Number of extensions: 48 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 504 Length of database: 537 Length adjustment: 35 Effective length of query: 469 Effective length of database: 502 Effective search space: 235438 Effective search space used: 235438 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory