Align 2,5-dioxovalerate dehydrogenase (EC 1.2.1.26) (characterized)
to candidate 8501416 DvMF_2146 delta-1-pyrroline-5-carboxylate dehydrogenase (RefSeq)
Query= metacyc::MONOMER-20632 (478 letters) >lcl|FitnessBrowser__Miya:8501416 DvMF_2146 delta-1-pyrroline-5-carboxylate dehydrogenase (RefSeq) Length = 1013 Score = 274 bits (700), Expect = 1e-77 Identities = 167/462 (36%), Positives = 237/462 (51%), Gaps = 11/462 (2%) Query: 8 YIGGERVAADAPAESLNPSNTNDVVAKVPMGGQAEVDAAVDAARKAFPAWADASPEVRSD 67 +IGG+ V D S NP+ +V+A+V GG+ EVDAA++AA+KAFPAW D SP R+ Sbjct: 522 FIGGKDVTTDDTIASTNPAKPAEVIARVCQGGKPEVDAAIEAAQKAFPAWRDTSPADRAM 581 Query: 68 LLDKVGSTIIARSADIGRLLAREEGKTLAEGIGETVRAGRIFKYFAGEALRRHGQNLEST 127 L + R ++ E GK + + Y+A E LR Sbjct: 582 FLHRAADIARRRMFELSAWQVLEVGKQWDQAFHDVGEGIDFLDYYAHEMLRLGTPRRMGR 641 Query: 128 RPGVEIQTYRQAVGVYGLITPWNFPIAIPAWKAAPALAFGNTVVIKPAGPTPATANVLAD 187 PG + Q G+ +I PWNFP AI AA A+ GN V+ KP+ L + Sbjct: 642 APGELNHLFYQPKGIAAVIAPWNFPFAIAIGMAAAAIVTGNPVIFKPSSIASRIGYNLTE 701 Query: 188 IMAECGAPAGVFNMLFGRGS-MGDALIKHKDVDGVSFTGSQGVGAQVAAAAVARQ----- 241 I E G P GVFN + GR S MGD L++H V + FTGS VG ++ A Q Sbjct: 702 IFREAGLPEGVFNYVPGRSSVMGDYLVEHPQVSMICFTGSMEVGLRIQEKAAKVQPGQMQ 761 Query: 242 -ARVQLEMGGKNPLIVLDDADLERAVAIALDGSFFATGQRCTASSRLIVQDGIHDKFVAL 300 RV EMGGKN +I+ DDADL+ AV L +F GQ+C+A SR+IV D I+D+FV Sbjct: 762 CKRVIAEMGGKNAIIIDDDADLDEAVLQVLYSAFGFQGQKCSACSRVIVLDPIYDRFVER 821 Query: 301 LAEKVAALRVGDALDPNTQIGPAVSEDQMETSYRYIDIAASEGGRVVTGGDRIKLDNPGW 360 L + A+++G + DP +GP + Y+ +A EG +V R + G Sbjct: 822 LVKAAQAIKIGPSEDPANYMGPVADASLQKNILEYVKVAEQEGKVLV---KRTDIPAEGC 878 Query: 361 YVRPTLIADTQAGMRINNEEVFGPVASTIRVKSYEEALEIANGVEFGLSAGIATTSLKHA 420 YV T++ + RI EE+FGPV + +R +++EAL IANG F L+ G+ + S ++ Sbjct: 879 YVPLTIVEGIKPHHRIAQEEIFGPVLAVMRAGNFDEALAIANGTRFALTGGVFSRSPENL 938 Query: 421 RHFQRYARAGMTMVNLATAG-VDYHVPFGGTKSSSYGAREQG 461 +R R G +N + G + PFGG K S G++ G Sbjct: 939 TKARREFRVGNLYLNRGSTGAMVERQPFGGFKMSGVGSKTGG 980 Lambda K H 0.317 0.133 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1072 Number of extensions: 54 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 478 Length of database: 1013 Length adjustment: 39 Effective length of query: 439 Effective length of database: 974 Effective search space: 427586 Effective search space used: 427586 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory