Align Phosphogluconate dehydratase; EC 4.2.1.12; 6-phosphogluconate dehydratase (uncharacterized)
to candidate 8501301 DvMF_2034 dihydroxy-acid dehydratase (RefSeq)
Query= curated2:P31961 (608 letters) >lcl|FitnessBrowser__Miya:8501301 DvMF_2034 dihydroxy-acid dehydratase (RefSeq) Length = 555 Score = 245 bits (626), Expect = 3e-69 Identities = 185/550 (33%), Positives = 269/550 (48%), Gaps = 57/550 (10%) Query: 33 KGPHRGTLPCGNLAHGVAACGESDKQTLRLMNQANVAIVSAYNDMLSAHQPFERFPGLIK 92 K PHR +L H + E ++ L V +V+A N+++ H +K Sbjct: 12 KAPHR------SLLHALGLTREEIERPL-------VGVVNAANEVVPGHVHLHTIAEAVK 58 Query: 93 QALHEIGSVGQFAGGVP------AMCDGVTQGEPGMELSLASRDVIAMSTAIALSHNMFD 146 + AGG P A+CDG+ GM SL SR++IA S I + + FD Sbjct: 59 AGVRA-------AGGTPMEFPAIAVCDGLAMNHEGMHFSLPSREIIADSIEIMATAHPFD 111 Query: 147 AALCLGVCDKIVPGLLIGSLRFGHLPTVFVPAGPMPTGISNKEKAAVRQLF-AEGKATRE 205 A + + CDK VPG+L+ LR +P++ V GPM G + + + +F A G+ R Sbjct: 112 ALVFIPNCDKSVPGMLMAMLRMD-IPSIMVSGGPMLAGGTLAGRTDLISVFEAVGRVQRG 170 Query: 206 ELLASE---MASYHAPG--TCTFYGTANTNQLLVEVMGLHLPGASFVNPNTPLRDELTRE 260 ++ +E M PG +C TANT + E MGL LPG + T R L + Sbjct: 171 DMTMAELDEMTETACPGCGSCAGMFTANTMNCMAETMGLALPGNGTIPAVTAARVRLAKH 230 Query: 261 AARQASRLTPENGNYVPMAEIVDEKAIVNSVVALLATGGSTNHTLHLLAIAQAAGIQLTW 320 A + L +N + IV +A+ N+V +A GGSTN LHL A+ AG+ LT Sbjct: 231 AGMKVMELLEKN---ITPRSIVTPRAVANAVAVDMALGGSTNTVLHLPAVFGEAGLDLTL 287 Query: 321 QDMSELSHVVPTLARIYPNGQADINHFQAAGGMSFLIRQLLDGGLLHEDVQTVAGPGLRR 380 E+S P L ++ P G I AAGG+ ++ +L GL+ V TV G L Sbjct: 288 DIFDEVSRKTPNLCKLSPAGHHHIQDLHAAGGIPAVMAELTRKGLVDTSVMTVTGKTLAE 347 Query: 381 YTREPFLEDGRLVWREGPERSLDEAILRPLDKPFSAEGGLRLMEGNLG--RGVMKVSAVA 438 E R L+ ++R D P+SA+GG+ +++G+L V+K SAVA Sbjct: 348 NLAEL------------NARVLNPDVIRSADAPYSAQGGIAILKGSLAPQGAVVKQSAVA 395 Query: 439 PEHQVVEAPVRIFHDQASLAAAFKAGELERDLVAVVRFQGPRAN-GMPELHKLTPFLGVL 497 PE V EA R+F + AA G++ + ++R++GPR GM E+ L+P + Sbjct: 396 PEMMVREAVARVFDSEGEAHAAIMGGKINKGDAIIIRYEGPRGGPGMREM--LSPTAAIA 453 Query: 498 -QDRGFKVALVTDGRMSGASGKVPAAI-HVSPEAIAGGPLARLRDGDRVRVDGVNGELRV 555 G VAL+TDGR SG G AAI HVSPEA GG + +R+GD + +D L + Sbjct: 454 GMGLGADVALITDGRFSG--GTRGAAIGHVSPEAADGGNIGLVREGDHILIDIPARRLDL 511 Query: 556 LVDDAEWQAR 565 LVD+AE AR Sbjct: 512 LVDEAELAAR 521 Lambda K H 0.319 0.135 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 927 Number of extensions: 69 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 555 Length adjustment: 36 Effective length of query: 572 Effective length of database: 519 Effective search space: 296868 Effective search space used: 296868 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory