Align Arabinose import ATP-binding protein AraG; EC 7.5.2.12 (characterized, see rationale)
to candidate 8502321 DvMF_3029 ABC transporter related (RefSeq)
Query= uniprot:B2SYR5 (512 letters) >FitnessBrowser__Miya:8502321 Length = 537 Score = 264 bits (675), Expect = 5e-75 Identities = 158/493 (32%), Positives = 268/493 (54%), Gaps = 12/493 (2%) Query: 5 LRFDNIGKVFPGVRALDGVSFDVNVGQVHGLMGENGAGKSTLLKILGGEYQPDSGRVMID 64 +R D I K F VRA ++ D+ G + L+GENGAGKSTL+ IL G+ + D+G +++D Sbjct: 30 VRLDGICKSFGKVRANHDITLDIRPGCIKALLGENGAGKSTLMSILAGKLRQDAGTIVVD 89 Query: 65 GNEVRFTSAASSIAAGIAVIHQELQYVPDLTVAENLLLGQLPNSLGWVNKREAKRFVRER 124 G F S ++ AGI +++Q V +TVAEN+LLGQ P+ L + + V Sbjct: 90 GVPTVFASPRDALRAGIGMVYQHFMLVDSMTVAENVLLGQSPDML--LRPARMRDEVAAL 147 Query: 125 LEAMGVALDPNAKLRKLSIAQRQMVEICKALLRNARVIALDEPTSSLSHRETEVLFKLVR 184 E G+A+DP A++ LS+ +RQ VEI K L R++RV+ LDEPT+ L+ RET+ LF+ + Sbjct: 148 AERYGLAVDPAARVGGLSMGERQRVEILKLLYRDSRVLILDEPTAVLTPRETDQLFEAMW 207 Query: 185 DLRADNRAMIYISHRMDEIYELCDACTIFRDGRKIASHPTLEGVTRDTIVSEMVGREISD 244 + +A+++ISH++ E+ + D I R G + + + + + MVGR++ Sbjct: 208 RMADQGKALVFISHKLQEVLTVADEIAILRRGEVVDEFSEADVPNQTVLANRMVGRDV-- 265 Query: 245 IYNYSARPLGEVR--FAAKGIEGHALAQPASFEVRRGEIVGFFGLVGAGRSELMHLVYGA 302 + A+ L V + + + G L+ S +VRRGEIV G+ G G+ EL+ + G Sbjct: 266 VLQVDAKRLTPVDTVLSVEHLSGAGLSD-VSLQVRRGEIVAIAGVAGNGQKELVEAICGL 324 Query: 303 DHKKGGELLLDGKPIKVRSAGEAIRHGIVLCPEDRKEEGIVAMATVSENINISCRRHYLR 362 + GE+ + G+P + AG R G+ PEDR+ + +N ++ R + + Sbjct: 325 ARPEAGEVRILGRPWREFFAGPPGRRGLAYIPEDRQGLATCRHLDLVDNFLLTTRNQFAK 384 Query: 363 VGMFLDRKKEAETADRFIKLLKIKTPSRRQKIRFLSGGNQQKAILSR-WLAEPDLKVVIL 421 G+FLDR + R + ++ R LSGGN QK ++ R + +P+ V++ Sbjct: 385 -GVFLDRTEATNAVKRVVWEYNVQPGDITAPARALSGGNLQKLVIGREFFRKPE--VIVA 441 Query: 422 DEPTRGIDVGAKHEIYNVIYQLAERGCAIVMISSELPEVLGVSDRIVVMRQGRISGELTR 481 + PT+G+D+ A E++ + + A +++++ +L E L ++DRI VM +GR + Sbjct: 442 ENPTQGLDISATEEVWGRLLE-ARSTSGVLLVTGDLNEALELADRIAVMYRGRFIDVFDK 500 Query: 482 KDATEQSVLSLAL 494 D + + L + Sbjct: 501 DDTAKVQAIGLMM 513 Lambda K H 0.320 0.136 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 605 Number of extensions: 39 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 537 Length adjustment: 35 Effective length of query: 477 Effective length of database: 502 Effective search space: 239454 Effective search space used: 239454 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory