Align mannose-1-phosphate guanylyltransferase (EC 2.7.7.13) (characterized)
to candidate 8501977 DvMF_2691 mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase (RefSeq)
Query= BRENDA::P07874 (481 letters) >FitnessBrowser__Miya:8501977 Length = 501 Score = 369 bits (948), Expect = e-106 Identities = 213/486 (43%), Positives = 288/486 (59%), Gaps = 22/486 (4%) Query: 4 VILSGGSGSRLWPLSRKQYPKQFLALTGDDTLFQQTIKR-LAFDGMQAPLLVCNKEHRFI 62 VIL+GGSG+RLWPLSR +PKQ LAL GD +L QQT++R L+ + +V N+EH F Sbjct: 19 VILAGGSGTRLWPLSRALFPKQLLALNGDLSLLQQTVRRVLSLFPPERVHIVTNEEHVFE 78 Query: 63 VQEQLEA--QNLASQAILLEPFGRNTAPAVAI---AAMKLV---AEGRDE----LLLILP 110 V+ Q A + L +Q +L EP GRNT PA+ + AAM AE D LL + P Sbjct: 79 VRAQARALDERLDTQ-VLAEPVGRNTLPAILLGLDAAMNAATGTAEADDAAQPPLLAVFP 137 Query: 111 ADHVIEDQRAFQQALALATNAAEKGEMVLFGIPASRPETGYGYIR-----ASADAQLPEG 165 +DH + D+ + A+ A +G V FG+P + PETGYGYIR ++A+A Sbjct: 138 SDHQLHDEVRWGAAVTRGAGLAAEGWTVTFGVPPTTPETGYGYIRRGELLSNANAAAQGA 197 Query: 166 VSRVQSFVEKPDEARAREFVAAGGYYWNSGMFLFRASRYLEELKKHDADIYDTCLLALER 225 V FVEKPD AR F+ G ++WNSGMF+F L +++ + + Sbjct: 198 AFAVDGFVEKPDLETARGFLRQGMHFWNSGMFVFNGGVLLAAVERFQPTLATWWTTRTDA 257 Query: 226 SQHDGDLVNIDAATFECCPDNSIDYAVMEKTSRACVVPLSAGWNDVGSWSSIWDVHAKDA 285 S G + +T P SIDY +ME R VV + GW+D+GSW +++ + AKD Sbjct: 258 SLAPGIPLTHGYSTL---PSISIDYGIMEHVDRIAVVEAAFGWDDLGSWEALYRLGAKDE 314 Query: 286 NGNVTKGDVLVHDSHNCLVHGNGKLVSVIGLEDIVVVETKDAMMIAHKDRVQDVKHVVKD 345 G V +GD + D +CL+ G + IGL +++ V+T+DA +I KD+VQ VK VV+ Sbjct: 315 RGCVIQGDTMALDCDDCLLLSRGGKLVAIGLSNVIAVQTRDATLICAKDQVQRVKDVVEK 374 Query: 346 LDAQGRSETQNHCEVYRPWGSYDSVDMGGRFQVKHITVKPGARLSLQMHHHRAEHWIVVS 405 L A+ H V RPWG+Y +D G +VK I V PGARLSLQMHHHR+EHW+V Sbjct: 375 LKAEKSPLVDVHLTVRRPWGNYTVLDEGPGRKVKRIEVNPGARLSLQMHHHRSEHWVVAK 434 Query: 406 GTAQVTCDDKTFLLTENQSTYIPIASVHRLANPGKIPLEIIEVQSGSYLGEDDIERLEDV 465 G A V ++ LTEN+ IP A++HRL NPG+IPLE+IE+QSG YLGEDDI R +DV Sbjct: 435 GAALVQVGNEERTLTENEWVDIPKATLHRLTNPGRIPLELIEIQSGPYLGEDDIVRFDDV 494 Query: 466 YGRTAE 471 YGR E Sbjct: 495 YGRRKE 500 Lambda K H 0.319 0.134 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 625 Number of extensions: 26 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 501 Length adjustment: 34 Effective length of query: 447 Effective length of database: 467 Effective search space: 208749 Effective search space used: 208749 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory