GapMind for catabolism of small carbon sources

 

Alignments for a candidate for proV in Desulfovibrio vulgaris Miyazaki F

Align Glycine betaine/proline betaine transport system ATP-binding protein ProV (characterized)
to candidate 8500289 DvMF_1045 glycine betaine/L-proline ABC transporter, ATPase subunit (RefSeq)

Query= SwissProt::P17328
         (400 letters)



>FitnessBrowser__Miya:8500289
          Length = 397

 Score =  363 bits (933), Expect = e-105
 Identities = 194/396 (48%), Positives = 274/396 (69%), Gaps = 3/396 (0%)

Query: 4   KLEVKNLYKIFGEHPQRAFKYIEKGLSKEQILEKTGLSLGVKDASLAIEEGEIFVIMGLS 63
           K+E+++L KIFG  P++A   +  G  K++I ++T  ++GV  A+  ++EGEI V+MGLS
Sbjct: 3   KIEIRDLTKIFGPVPEKALAMVRAGKPKDEIYKRTKHAVGVNRATFDVDEGEIVVVMGLS 62

Query: 64  GSGKSTMVRLLNRLIEPTRGQVLIDGVDIAKISDAELREVRRKKIAMVFQSFALMPHMTV 123
           GSGKST+VR LNRLIEPT G V IDG D+  +S  +LR +R++   MVFQ+FAL PH TV
Sbjct: 63  GSGKSTLVRCLNRLIEPTDGTVRIDGTDVTTLSVKDLRALRQRTFGMVFQNFALFPHRTV 122

Query: 124 LDNTAFGMELAGIAAQERREKALDALRQVGLENYAHAYPDELSGGMRQRVGLARALAINP 183
           L+N  +G+E+ G A   RR+KA +AL +VGL  +  A P +LSGGM+QRVGLARALA++P
Sbjct: 123 LENAEYGLEVMGAAKATRRDKAAEALARVGLAGWEAARPGQLSGGMQQRVGLARALALDP 182

Query: 184 DILLMDEAFSALDPLIRTEMQDELVKLQAKHQRTIVFISHDLDEAMRIGDRIAIMQNGEV 243
           DILLMDEAFSALDPLIR +MQDEL++LQ   ++TIVFISHDLDEA++IGDRI +M++G V
Sbjct: 183 DILLMDEAFSALDPLIRRDMQDELLRLQDDVRKTIVFISHDLDEALKIGDRIVLMRDGAV 242

Query: 244 VQVGTPDEILNNPANDYVRTFFRGVDISQVFSAKDIARRSPVGLIRKTPGFGPRSALKLL 303
           VQVGTP++IL +PA+DYV  F   VDI++V +A  + +RS    +      GPR+AL+ +
Sbjct: 243 VQVGTPEDILTSPADDYVARFVADVDIARVLTAGTVMKRSEAVAVLGVD--GPRTALRKM 300

Query: 304 QDEDREYGYVIERGNKFVGVVSIDSLKAALSQAQGIEAALI-DDPLVVDAQTPLSELLSH 362
           ++      +V++R +K VG+V+ D +   L+  +   AA++  D   V    P SEL+  
Sbjct: 301 RNHAIATLFVLDRNHKLVGLVTADDIVEHLAGGERDLAAIMRTDITTVSTDAPASELIPL 360

Query: 363 VGQAPCAVPVVDEEHQYVGIISKRMLLQALDREGGN 398
           +   P  + V DE  +  G+I + +LL AL   GGN
Sbjct: 361 MAGLPHPLAVTDERGRLAGVIVRGLLLGALAERGGN 396


Lambda     K      H
   0.319    0.137    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 461
Number of extensions: 18
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 397
Length adjustment: 31
Effective length of query: 369
Effective length of database: 366
Effective search space:   135054
Effective search space used:   135054
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory