Align L-lactate permease (characterized, see rationale)
to candidate 8501125 DvMF_1861 L-lactate permease (RefSeq)
Query= uniprot:A0KZB2 (547 letters) >FitnessBrowser__Miya:8501125 Length = 569 Score = 383 bits (984), Expect = e-111 Identities = 220/562 (39%), Positives = 333/562 (59%), Gaps = 29/562 (5%) Query: 4 LQLLASLTPVISVMIFLVLLRMPASKAMPISMIITALAAVFIWQMDTTLLAASVLEGLLS 63 L L +L P++ ++ +V +R P+++AMP++ ++ L A+ W + +AA L+G+++ Sbjct: 5 LLALVALLPILVALVLMVGMRWPSTRAMPLAWLVCVLGAIGAWNLPAGYIAALSLQGVVT 64 Query: 64 AITPLTIIFGAVFLLNTLKYSGAMDTIRAGFTNISADARVQVIIICWLFGAFIEGSAGFG 123 AI L I+FGA+ +L TLKYSG M+TI+ G NIS D R+Q III ++F AFIEG+AGFG Sbjct: 65 AIGVLIIVFGAIIILYTLKYSGGMETIQYGMQNISRDKRIQAIIIGYMFAAFIEGAAGFG 124 Query: 124 TPAAIGAPLLVLLGVPPVAAAVVALIADSACVSFGAIGLPVLFGMEQGLTQGGVSLAAEQ 183 TPAA+ APLL+ LG PP+AAAV+ L+ +S CVSFGA+G P+L G+ + L + Sbjct: 125 TPAALAAPLLLSLGFPPLAAAVICLVFNSFCVSFGAVGTPILIGL-----KFLAPLVKDA 179 Query: 184 FAAHGG-SYVGYARFIVMHMITIDLITGTLI---PLVMVTILTGFFGRNKSFKEGLAIWK 239 AA+ G ++ + F + + L+ G +I P+ M+ LT F+G+ KS+ EG A W+ Sbjct: 180 AAANPGLNFTDFGSFAKVIGQWVTLMHGPMIFILPIFMLGFLTRFYGQKKSWAEGFAAWQ 239 Query: 240 FAIFAGLAFTVPAWIINYLAGPEFPSVIGSLVGMALVIPVARKGYLLPKTPWNDFAENDS 299 F +FA +AF VP +L GPEFPS+IG LVG+ +++ A+KG+ +PK W DF + Sbjct: 240 FCVFAAVAFIVPYLTFAWLVGPEFPSLIGGLVGLGIIVAGAKKGFCVPKETW-DFGPQST 298 Query: 300 QEGAKIETTA---------KFSQIAAWTPYIIMAALLVLSR-TVAPLKAWLSSFNISWTG 349 E T A SQ AW PYI++ +LVL+R LK W+S+ + Sbjct: 299 WEAEWTGTIATSTNTEFKPHMSQFMAWLPYILIGVILVLTRIPELGLKGWMSAQKLPIND 358 Query: 350 LMGTE-LKASFATLYAPGAF-FVAVCILGFFLFKMKSPAIKQSIGVSCKSMLPTIISLGA 407 ++G + + AS LY PG F V +L L MK A+K++ S M I+L A Sbjct: 359 ILGYKGVSASIDYLYLPGTIPFTLVALLTIMLHGMKGDAVKKAWSESFSKMKAPTIALFA 418 Query: 408 SVPMVKIFLNSGVNGAGL-----ASMPVALADMLGQSMGAVWAWMAPIVGIFGAFLSGSA 462 +V +V IF SGV A L SMP+A+A + G W +A VG GAF++GS Sbjct: 419 AVALVSIFRGSGVADAALNPNNYPSMPLAMAKTVAAFAGNAWPMLASYVGGLGAFITGSN 478 Query: 463 TFSNMMFSSLQYSVADNIGMNHTLVLALQGIGANAGNMMCVMNVVAAATVVGMAGRESEI 522 T S+++F+ Q+ VA + + +++A Q G GNM+C+ N+VA V G+ GRE I Sbjct: 479 TVSDLLFAEFQWGVAQQLSLPRQIIVAAQVAGGAMGNMVCIHNIVAVCAVTGLIGREGMI 538 Query: 523 IRKTM-PVAIGYALLAGTIATL 543 +++T P A+ Y ++ G IA++ Sbjct: 539 LKRTFWPFAL-YGIVVGIIASI 559 Lambda K H 0.326 0.138 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 970 Number of extensions: 60 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 547 Length of database: 569 Length adjustment: 36 Effective length of query: 511 Effective length of database: 533 Effective search space: 272363 Effective search space used: 272363 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory