Align RhaT, component of Rhamnose porter (Richardson et al., 2004) (Transport activity is dependent on rhamnokinase (RhaK; AAQ92412) activity (Richardson and Oresnik, 2007) This could be an example of group translocation!) (characterized)
to candidate 8502321 DvMF_3029 ABC transporter related (RefSeq)
Query= TCDB::Q7BSH4 (512 letters) >FitnessBrowser__Miya:8502321 Length = 537 Score = 259 bits (661), Expect = 2e-73 Identities = 154/481 (32%), Positives = 260/481 (54%), Gaps = 9/481 (1%) Query: 18 PAILEMRGISQIFPGVKALDNVSIALHPGTVTALIGENGAGKSTLVKILTGIYRPNEGEI 77 P ++ + GI + F V+A ++++ + PG + AL+GENGAGKSTL+ IL G R + G I Sbjct: 27 PPVVRLDGICKSFGKVRANHDITLDIRPGCIKALLGENGAGKSTLMSILAGKLRQDAGTI 86 Query: 78 LVDGRPTTFASAQAAIDAGVTAIHQETVLFDELTVAENIFLGHAPRTRFRTIDWQTMNSR 137 +VDG PT FAS + A+ AG+ ++Q +L D +TVAEN+ LG +P R M Sbjct: 87 VVDGVPTVFASPRDALRAGIGMVYQHFMLVDSMTVAENVLLGQSPDMLLRP---ARMRDE 143 Query: 138 SKALLTALESNIDPTIRLKDLSIAQRHLVAIARALSIEARIVIMDEPTAALSRKEIDDLF 197 AL +DP R+ LS+ +R V I + L ++R++I+DEPTA L+ +E D LF Sbjct: 144 VAALAERYGLAVDPAARVGGLSMGERQRVEILKLLYRDSRVLILDEPTAVLTPRETDQLF 203 Query: 198 RIVRGLKEQGKAILFISHKFDELYEIADDFVVFPRRSRRPVRGVSRKTPQDEIVRMMVGR 257 + + +QGKA++FISHK E+ +AD+ + R + Q + MVGR Sbjct: 204 EAMWRMADQGKALVFISHKLQEVLTVADEIAILRRGEVVDEFSEADVPNQTVLANRMVGR 263 Query: 258 DVENVFPKIDVAIGGPVLEIRNYSHRT--EFRDISFTLRKGEILGVYGLIGAGRSELSQS 315 D V ++D PV + + H + D+S +R+GEI+ + G+ G G+ EL ++ Sbjct: 264 D---VVLQVDAKRLTPVDTVLSVEHLSGAGLSDVSLQVRRGEIVAIAGVAGNGQKELVEA 320 Query: 316 LFGITKPLSGKMVLEGQEITIHSPQDAIRAGIVYVPEERGRHGLALPMPIFQNMTLPSLA 375 + G+ +P +G++ + G+ R G+ Y+PE+R + + N L + Sbjct: 321 ICGLARPEAGEVRILGRPWREFFAGPPGRRGLAYIPEDRQGLATCRHLDLVDNFLLTTRN 380 Query: 376 RTSRRGFLRAANEFALARKYAERLDLRAAALSVPVGTLSGGNQQKVVIGKWLATAPKVII 435 + ++ FL ++ +++ ++ P LSGGN QK+VIG+ P+VI+ Sbjct: 381 QFAKGVFLDRTEATNAVKRVVWEYNVQPGDITAPARALSGGNLQKLVIGREFFRKPEVIV 440 Query: 436 LDEPTKGIDIGSKAAVHGFISELAAEGLSIIMVSSELPEIIGMSDRVLVMKEGLSAGIFE 495 + PT+G+DI + V G + E A +++V+ +L E + ++DR+ VM G +F+ Sbjct: 441 AENPTQGLDISATEEVWGRLLE-ARSTSGVLLVTGDLNEALELADRIAVMYRGRFIDVFD 499 Query: 496 R 496 + Sbjct: 500 K 500 Lambda K H 0.320 0.137 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 639 Number of extensions: 38 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 537 Length adjustment: 35 Effective length of query: 477 Effective length of database: 502 Effective search space: 239454 Effective search space used: 239454 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory