Align Probable glycine dehydrogenase (decarboxylating) subunit 2; EC 1.4.4.2; Glycine cleavage system P-protein subunit 2; Glycine decarboxylase subunit 2; Glycine dehydrogenase (aminomethyl-transferring) subunit 2 (uncharacterized)
to candidate 8499451 DvMF_0223 glycine dehydrogenase subunit 2 (RefSeq)
Query= curated2:A7HLP1 (477 letters) >lcl|FitnessBrowser__Miya:8499451 DvMF_0223 glycine dehydrogenase subunit 2 (RefSeq) Length = 481 Score = 506 bits (1303), Expect = e-148 Identities = 256/476 (53%), Positives = 340/476 (71%), Gaps = 13/476 (2%) Query: 2 TIFEKSTSGRKGYELPEYELPSVDCGIPEHLVRKEKPLLPEVSEVDVVRHYTELASKNYS 61 T F S GR + ++ + D +P +L+R +P LPE+ E+DVVRH+T L+ N+ Sbjct: 3 TAFAASVPGRNACLPAQPKMHAADM-LPANLLRASRPALPELGELDVVRHFTRLSRLNFG 61 Query: 62 VDKGFYPLGSCTMKYNPKINEDMAML--FTQLHPMQPR-----ETIQGAIDLMGHLKEML 114 VD FYPLGSCTMKYNPK E +A L FT+LHP+ + + QGA+++M + +L Sbjct: 62 VDSNFYPLGSCTMKYNPKFTEQVAALPGFTRLHPLMAQLKGAGQYTQGALEVMWETERLL 121 Query: 115 CEITGTDDMTLQPAAGAHGELTGLLVARAYFEDKGELDKRRKVLVPDSAHGTNPASAAMA 174 CEITG TL P AGAHGELTG+++ AY +DKG +++ KV+ PDSAHGTNPASAA+A Sbjct: 122 CEITGMRAFTLHPMAGAHGELTGVMLIAAYHKDKG--NRKTKVICPDSAHGTNPASAALA 179 Query: 175 GFEVVELKSGKDGCVNLEELKAHLDENVAVIMLTNPNTLGLFEKDILTIAKMAHEVGALL 234 G+EVV ++S KDG V+ + L+A LD++VA +M+T PNTLGLFE + I + V ALL Sbjct: 180 GYEVVNIES-KDGMVDPDALEAALDDDVAALMMTCPNTLGLFENHLPRIVEKLRAVDALL 238 Query: 235 YYDGANLNAIMGRTRPGDMGFDIVHLNLHKTFSTPHGMGGPGSGPIGVKKHLAPYLPVPV 294 YYDGANLNAI+G+ R GD+GFD+VHLNLHKTF+TPHG GGPG+GP+GV + L PYLP+ Sbjct: 239 YYDGANLNAILGKMRVGDVGFDVVHLNLHKTFATPHGGGGPGAGPVGVSERLVPYLPISR 298 Query: 295 IRKAGE-KYDLDYNLPKSIGMVRSFYGNFTVMVKAYTYILTMGNKGLKHVSDMAVLNANY 353 + K + +Y L+Y+ PKSIG + FYGNF V++KAY YIL +G +GL+ VS+ AVLNANY Sbjct: 299 VEKLHDGRYYLNYDHPKSIGFMAPFYGNFGVLLKAYAYILRLGGEGLERVSEYAVLNANY 358 Query: 354 LRAKLSKIYKVAYDRICMHEFVIDNEEFVKKTGVKTLDIAKRLLDYGLHAPTVYFPLIVH 413 LR +L K+ ++ +DRICMHEFV + G++ LD+AK LLD G HAPT+YFPLIV Sbjct: 359 LRKRLEKVLEIPHDRICMHEFVASACNHA-ECGIRALDVAKALLDKGYHAPTIYFPLIVK 417 Query: 414 EAMMIEPTETESKRTLDEFIDAMEKIYNEAIENPELVKKAPYKTPIRRLDDVNATK 469 E MM EPTETES++TLDEF D + I A +NP+ + AP TP+RRLD+ A + Sbjct: 418 ECMMFEPTETESRQTLDEFADDLIAILESAAQNPDALHAAPVTTPVRRLDETAAAR 473 Lambda K H 0.318 0.137 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 672 Number of extensions: 26 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 481 Length adjustment: 34 Effective length of query: 443 Effective length of database: 447 Effective search space: 198021 Effective search space used: 198021 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory