Align Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized)
to candidate 8502043 DvMF_2756 phosphoribosylglycinamide formyltransferase 2 (RefSeq)
Query= SwissProt::P33221 (392 letters) >FitnessBrowser__Miya:8502043 Length = 393 Score = 492 bits (1266), Expect = e-144 Identities = 248/392 (63%), Positives = 307/392 (78%), Gaps = 1/392 (0%) Query: 1 MTLLGTALRPAATRVMLLGSGELGKEVAIECQRLGVEVIAVDRYADAPAMHVAHRSHVIN 60 M +GT P+ATR++LLGSGELG+EVAIE RLGVEVIAVDRY +APAM VAHRSHV++ Sbjct: 1 MVTIGTPNTPSATRILLLGSGELGREVAIEAMRLGVEVIAVDRYPNAPAMQVAHRSHVVS 60 Query: 61 MLDGDALRRVVELEKPHYIVPEIEAIATDMLIQLEEEGLNVVPCARATKLTMNREGIRRL 120 MLDG ALRR++E E+PH IVPEIEAIAT+ L++LE+EG VVP ARA +LTM+REGIRRL Sbjct: 61 MLDGAALRRIIEAERPHCIVPEIEAIATETLLELEKEGFRVVPTARAARLTMDREGIRRL 120 Query: 121 AAEELQLPTSTYRFADSESLFREAVADIGYPCIVKPVMSSSGKGQTFIRSAEQLAQAWKY 180 AAEEL LPTS YRFA++E+ +REAVA +G PC+VKPVMSSSGKGQ+ +R+ + +AW+Y Sbjct: 121 AAEELGLPTSPYRFAETEAEYREAVAAVGLPCVVKPVMSSSGKGQSTVRTEADVMKAWEY 180 Query: 181 AQQGGRAGAGRVIVEGVVKFDFEITLLTVSAVDGVHFCAPVGHRQEDGDYRESWQPQQMS 240 AQ GGRAG G+VIVEG V FD+EIT LTV G FC P+GH Q+DGDYRESWQP MS Sbjct: 181 AQTGGRAGGGKVIVEGFVDFDYEITQLTVRHAGGTTFCDPIGHLQKDGDYRESWQPHPMS 240 Query: 241 PLALERAQEIARKVVLALGGYGLFGVELFVCGDEVIFSEVSPRPHDTGMVTLISQDLSEF 300 AL ++ +A V ALGG+G+FGVELF+ GD+V FSEVSPRPHDTG+VTLISQ+LSEF Sbjct: 241 QAALAESRRMAEAVTGALGGWGIFGVELFIKGDKVYFSEVSPRPHDTGLVTLISQNLSEF 300 Query: 301 ALHVRAFLGLPVGGIRQYGPAASAVILPQLTSQNVTFDNVQNAVG-ADLQIRLFGKPEID 359 ALH RA LGLPV +RQ GPAAS V+L + S + + ++ A+ D + LFGKPE+ Sbjct: 301 ALHARAILGLPVPALRQNGPAASCVVLAEGDSMSPGYHGIEAALAEPDTGLCLFGKPEVH 360 Query: 360 GSRRLGVALATAESVVDAIERAKHAAGQVKVQ 391 G RR+GVALA S+ +A +A+ AA V+V+ Sbjct: 361 GKRRMGVALALGASIEEARAKARRAAAAVQVE 392 Lambda K H 0.320 0.136 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 468 Number of extensions: 16 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 392 Length of database: 393 Length adjustment: 31 Effective length of query: 361 Effective length of database: 362 Effective search space: 130682 Effective search space used: 130682 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory