Align trehalose-specific PTS system, I, HPr, and IIA components (characterized)
to candidate 8502167 DvMF_2877 phosphoenolpyruvate-protein phosphotransferase (RefSeq)
Query= reanno::pseudo3_N2E3:AO353_15995 (844 letters) >FitnessBrowser__Miya:8502167 Length = 591 Score = 316 bits (809), Expect = 3e-90 Identities = 195/567 (34%), Positives = 300/567 (52%), Gaps = 17/567 (2%) Query: 272 VSTKLLRGVCASAGSAFGYVVQVAERTLEM-----PEFAADQQLERESLERALMHATQAL 326 ++ ++L+G+ SAG + G R + P AAD ++ R LE+A L Sbjct: 1 MAREILQGIAVSAGVSIGKAFFTNRRRRSVSFEIIPPGAADSEVAR--LEQAASDVRDDL 58 Query: 327 QRLRDNAAGEAQ--ADIFKAHQELLEDPSLLEQAQALIAEGKSAA-FAWNSATEATATLF 383 R RDN E + A I +H + +DP L+ A I + A +A + A EA A F Sbjct: 59 ARARDNVPAELRDHAAIINSHMMICQDPKLIRAASQRIRDHHICAEWALDQAVEAIAAAF 118 Query: 384 KSLGSTLLAERALDLMDVGQRVLKLILGVPDGVWELPDQAI-LIAEQLTPSQTAALDTGK 442 ++ + ER D+ V +R+ ++G PD+ I L+A LTP+ L T K Sbjct: 119 SAIEDPYIRERVQDVRAVAERIQTRLVGRHAEPLRTPDERIVLMAHDLTPADAMGLPTVK 178 Query: 443 VLGFATVGGGATSHVAILARALGLPAVCGLPLQVLSLASGTRVLLDADKGELHLDPAVSV 502 ++ FAT GG TSH ILAR+L +PAV G+ S+A G V++DA +G + +DP + Sbjct: 179 IMSFATAEGGKTSHTGILARSLQIPAVVGVSSLEESVADGDLVIVDALRGLIVVDPDETE 238 Query: 503 IEQLHAKRQQQRQRHQHELENAARAAVTRDGHHFEVTANVASLAETEQAMSLGAEGIGLL 562 + + Q + + A T DG+ +V AN+ + E Q + G +G+GL Sbjct: 239 LADYTDLKYQFENYQKSIRRQSTLPAETLDGYRIDVQANIELVEEVPQVLDGGGDGVGLY 298 Query: 563 RSEFLYQQRSVAPSHDEQAGTYSAIARALGPQRNLVVRTLDVGGDKPLAYVPMDSEANPF 622 R+E+ + R +P+ +E YS +A L P+R +V RTLDVG DK L+ E NP Sbjct: 299 RTEYAFLNRRTSPTEEELYDEYSQLAGLLSPRR-VVFRTLDVGADKMLSEQSQLEEPNPA 357 Query: 623 LGMRGIRLCLERPQLLREQFRAILSSAGLARLHIMLPMVSQLSELRLARLMLEEEALALG 682 LG+R IR CL + R Q RAIL ++ ++ PM+S L ELR A+ +L E L Sbjct: 358 LGLRAIRFCLRHQDVFRRQLRAILRASAHGSASLLFPMISGLHELRQAKHILNEVRAELD 417 Query: 683 LRELP-----KLGIMIEVPAAALMADLFAPEVDFFSIGTNDLTQYTLAMDRDHPRLASQA 737 LP +GIM+E+P+A ++++ A EVDFFSIGTNDL QY+L +DR + ++ Sbjct: 418 AAGLPYDPDMPVGIMVELPSAVMISEALAQEVDFFSIGTNDLIQYSLGIDRGNKHVSYLY 477 Query: 738 DSFHPSVLRLIASTVKAAHAHGKWVGVCGALASETLAVPLLLGLGVDELSVSVPLIPAIK 797 HP+++R I V +AH G V VCG +AS+ +P+LLG+ +D +S++ IP IK Sbjct: 478 QPLHPAIVRSIKYVVDSAHRMGISVCVCGEVASDPYCLPILLGMQIDAISIAPQAIPGIK 537 Query: 798 AAIREVELSDCQAIAHQVLGLESAEQV 824 +R + +C+ + VL + + Sbjct: 538 HILRRTNMEECKELLRDVLSASTVSTI 564 Lambda K H 0.318 0.132 0.370 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 974 Number of extensions: 47 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 844 Length of database: 591 Length adjustment: 39 Effective length of query: 805 Effective length of database: 552 Effective search space: 444360 Effective search space used: 444360 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory