Align Probable D-lactate dehydrogenase, mitochondrial; DLD; Lactate dehydrogenase D; EC 1.1.2.4 (characterized)
to candidate Dsui_0378 Dsui_0378 FAD/FMN-dependent dehydrogenase
Query= SwissProt::F1QXM5 (497 letters) >lcl|FitnessBrowser__PS:Dsui_0378 Dsui_0378 FAD/FMN-dependent dehydrogenase Length = 465 Score = 496 bits (1277), Expect = e-145 Identities = 240/440 (54%), Positives = 321/440 (72%), Gaps = 3/440 (0%) Query: 49 SVGSAVREQHGRDESVHRCRPPDVVVFPRSVEEVSALAKICHHYRLPIIPFGTGTGLEGG 108 S G +VR QHGRDES H PD VVF S EEV+A+ ++C YR+P+IP+G G+ +EG Sbjct: 25 SQGESVRLQHGRDESKHEPMLPDGVVFAESTEEVAAVVRLCREYRVPVIPYGVGSSVEGH 84 Query: 109 VGALQGGVCFSLRKMEQVVDLHQEDFDVTVEPGVTRKSLNSYLRDTGLWFPVDPGADASL 168 V A+ GG+ L M +V+ +H ED DVTV+ GVTRK LN L+ TGL+FP+DPGADA+L Sbjct: 85 VLAVHGGISIDLSGMNRVLSIHAEDLDVTVQAGVTRKQLNDELKGTGLFFPIDPGADATL 144 Query: 169 CGMAATSASGTNAVRYGTMRENVLNLEVVLADGTILHTAGKGRRPRKTAAGYNLTNLFVG 228 GMAAT ASGTNAVRYGTMRENVL+L VV +G I+ T G R RK++AGY+LT LFVG Sbjct: 145 GGMAATRASGTNAVRYGTMRENVLSLTVVTPEGKIVRT---GSRARKSSAGYDLTRLFVG 201 Query: 229 SEGTLGIITKATLRLYGVPESMVSAVCSFPSVQSAVDSTVQILQAGVPIARIEFLDDVMI 288 SEGTLGIIT+ T++LY +PE+M +AVC+FPSV +AVD+ +Q +Q GVP+AR+E LD + + Sbjct: 202 SEGTLGIITELTVKLYPIPEAMSAAVCAFPSVDAAVDTVIQTIQLGVPVARVELLDALTL 261 Query: 289 NACNRFNNLSYAVTPTLFLEFHGSSKSMEEQVSVTEEITRDNGGSDFAWAEDEETRSRLW 348 A NR++ + PTLF EFHGS ++EQ +T+EI + NGG DF WA +E RSRLW Sbjct: 262 QAINRYSKTTLPEAPTLFFEFHGSDSGVQEQAELTQEIAQGNGGQDFQWATRQEDRSRLW 321 Query: 349 KARHDAWYAAMALRPGCKAYSTDVCVPISRLPQIIVETKADLISNNITGPIAGHVGDGNF 408 +ARHDA++A + L+PG + + TDVCVPISRL + I T D+ ++ + GHVGDGNF Sbjct: 322 QARHDAYFACLQLKPGARCFPTDVCVPISRLAECIHATNEDIAQVSLPIALFGHVGDGNF 381 Query: 409 HCLIVLDPNDTDEVQRVHSFTERLARRALAMDGTCTGEHGIGLGKRALLREEVGPLAIEV 468 H ++++D ++ E+ ++R+ RA+AM+GTCTGEHGIGLGK+ L +E G + + Sbjct: 382 HLVVLVDTDNPKEMAEGEWISQRVVERAIAMEGTCTGEHGIGLGKQHYLLQEHGEDGVAL 441 Query: 469 MKGLKASLDPRNLMNPGKVL 488 M+ LK +LDP NLMNPGK+L Sbjct: 442 MRTLKTALDPLNLMNPGKIL 461 Lambda K H 0.319 0.135 0.399 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 585 Number of extensions: 21 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 465 Length adjustment: 34 Effective length of query: 463 Effective length of database: 431 Effective search space: 199553 Effective search space used: 199553 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory