Align C4-dicarboxylic acid transporter DauA; Dicarboxylic acid uptake system A (characterized)
to candidate Dsui_1250 Dsui_1250 sulfate permease-like transporter, MFS superfamily
Query= SwissProt::P0AFR2 (559 letters) >lcl|FitnessBrowser__PS:Dsui_1250 Dsui_1250 sulfate permease-like transporter, MFS superfamily Length = 555 Score = 374 bits (959), Expect = e-108 Identities = 220/530 (41%), Positives = 322/530 (60%), Gaps = 41/530 (7%) Query: 24 YTAARFTRDLIAGITVGIIAIPLAMALAIGSGVAPQYGLYTAAVAGIVIALTGGSRFSVS 83 Y A+F RD+ AG+TVG++A+PLAMA AI SGV P G++TA VAG +IA GGSR + Sbjct: 15 YDRAQFGRDVSAGLTVGVLALPLAMAFAIASGVDPAAGIWTAIVAGFIIAALGGSRVQIG 74 Query: 84 GPTAAFVVILYPVSQQFGLAGLLVATLLSGIFLILMGLARFGRLIEYIPVSVTLGFTSGI 143 GPT AF+VI+Y + Q+GLA LL+AT+L+G+ LI MGLAR G LI +IPV+V +GFT+GI Sbjct: 75 GPTGAFIVIVYGIVAQYGLANLLIATMLAGLILIGMGLARLGALIRFIPVTVVIGFTNGI 134 Query: 144 GITIGTMQIKDFLGLQMAHVPEHYLQKVGALFMALPTINVGDAAIGIVTLGILVFW---- 199 + I QIK+FLGL M +P + K+ L LP ++ A+ +L +LV W Sbjct: 135 AVLIFISQIKEFLGLDMEALPAEFFAKMKVLAANLPNTDLPTLALASASLVLLVLWNKKV 194 Query: 200 ----PRLGIRLPGHLPALLAGCAVMGIVNLLGGHVATIGSQFHYVLADGSQGNGIPQLLP 255 P LG +LPG L L+AG +LL V TIGS+F GIPQ LP Sbjct: 195 AGKLPLLG-KLPGPLAVLIAGTVAQ---SLLEFPVETIGSRF----------GGIPQSLP 240 Query: 256 QLVLPWDLPNSEFTLTWDSIRTLLPAAFSMAMLGAIESLLCAVVLDGMTGTKHKANSELV 315 P LT ++R L+ A ++A+LGAIESLL A V D +H N EL+ Sbjct: 241 AFAFP--------ELTLSTLRNLISPAITIALLGAIESLLSARVADSQIDDRHDPNQELL 292 Query: 316 GQGLGNIIAPFFGGITATAAIARSAANVRAGATSPISAVIHSILVILALLVLAPLLSWLP 375 QG+ N++AP GG AT AIAR++ NVRAG +P++ ++H++ ++ +LV APL S +P Sbjct: 293 AQGVANVVAPLVGGFAATGAIARTSTNVRAGGRTPVAGMVHALTLLAVVLVAAPLASDVP 352 Query: 376 LSAMAALLLMVAWNMSEAHKVVDLLRHAPKDDIIVMLLCMSLTVLFDMVIAISVGIVLAS 435 L+ ++A+L++VAWNM E H+ +L R++ + ++L +TV+FD+ +A+ +G+VLAS Sbjct: 353 LATLSAILMVVAWNMGEWHEFKELPRYS-MNYRAILLSTFFITVVFDLTLAVEIGMVLAS 411 Query: 436 LLFMRRIARMTRLAPVVVDVPD-----DVLVLRVIGPLFFAAAEGLFTDLESRLEGKRIV 490 L F+ R++ +T++AP + +PD V + G LFF A L T L+ +G +++ Sbjct: 412 LFFIYRMSELTKVAP--LSLPDWAAGQPVAAYSLYGSLFFGAVGKLQTLLDQHAQGTQVL 469 Query: 491 ILKWDAVPVLDAGGLDAFQRFVKRLPE--GCELRVCNVEFQPLRTMARAG 538 IL V LD GLD + + L + GC L + + QP ++R+G Sbjct: 470 ILDLHQVINLDTTGLDTLEALQRMLAKRGGC-LILAGLNAQPGSLVSRSG 518 Lambda K H 0.328 0.142 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 690 Number of extensions: 40 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 555 Length adjustment: 36 Effective length of query: 523 Effective length of database: 519 Effective search space: 271437 Effective search space used: 271437 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory