Align Alcohol dehydrogenase (quinone), cytochrome c subunit; ADH; Alcohol dehydrogenase (quinone), subunit II; Cytochrome c-553; Cytochrome c553; Ethanol:Q2 reductase; G3-ADH subunit II; Quinohemoprotein-cytochrome c complex; Ubiquinol oxidase; EC 1.1.5.5 (characterized)
to candidate Dsui_2086 Dsui_2086 cytochrome c
Query= SwissProt::P0A388 (468 letters) >FitnessBrowser__PS:Dsui_2086 Length = 696 Score = 360 bits (925), Expect = e-104 Identities = 194/419 (46%), Positives = 256/419 (61%), Gaps = 15/419 (3%) Query: 10 SAAAF--SLLAGTALAQTPDADSALVQKGAYVARLGDCVACHTALHGQSYAGGLEIKSPI 67 +AA F S LA L + AD+ + +G Y+ARLGDCVACHTA G+S AGG E+ +P Sbjct: 23 AAATFLLSALAAAGLGRAEAADAGQIARGEYLARLGDCVACHTAEGGKSMAGGRELATPF 82 Query: 68 GTIYSTNITPDPTYGIGRYTFAEFDEAVRHGIRKDGSTLYPAMPYPSFSRMTKEDMQALY 127 G ++STNITPD GIG YTFA+FD A+R G+ DG LYPAMPYPS+++MT EDMQALY Sbjct: 83 GVLFSTNITPDKETGIGNYTFAQFDRAMRKGVAADGHNLYPAMPYPSYAKMTGEDMQALY 142 Query: 128 AYFMHGVKPVAQPDKQPDISWPLSMRWPLGIWRMMFSPSPKDFTPAPGTDPEIARGDYLV 187 AY M G+ PV Q +K + WP + RW L +W F + F P G D RG YLV Sbjct: 143 AYLMQGLAPVKQANKPTAMRWPFNQRWGLSLWNWAFLDA-TPFQPDAGKDATWNRGAYLV 201 Query: 188 TGPGHCGACHTPRGFAMQEKALDAAG--GPDFLSGGAPIDNWVAPSLRNDPVVGLGRWSE 245 G GHCGACHTPRG A QEKA+ AG G FL+ G +++W A SLR G W+ Sbjct: 202 QGLGHCGACHTPRGIAFQEKAMSDAGSKGKHFLA-GETVESWRALSLR-------GLWTV 253 Query: 246 DDIYTFLKSGRIDHSAVFGGMGDVVAWSTQYFTDDDLHAIAKYLKSLPPVPPSQGNYTYD 305 +D FLK+G+ + G M +V+ STQ+ D+DL AIA YLKSLPP + Sbjct: 254 EDTALFLKTGQNRFATASGNMAEVIHHSTQHVKDEDLVAIATYLKSLPPGEHELPAPSVP 313 Query: 306 PSTANMLASGNTASVPGADTYVKECAICHRNDGGGVARMFPPLAGNPVVVTENPTSLVNV 365 S GN S G YV+ C CHR DG GV+++FPPLAGNP V ++P +L+++ Sbjct: 314 RSEVAGKVPGNLFSSRGGLAYVQFCGDCHRQDGNGVSKIFPPLAGNPAVTAKDPATLLHI 373 Query: 366 IAHGGVLPPSNWAPSAVAMPGYSKSLSAQQIADVVNFIRTSWGNKAPGTVTAADVTKLR 424 G + P MPG+++ L+ Q++A+++ F+R+SWGN VTA+ V K+R Sbjct: 374 TLTGWKTASTAAHPRVFTMPGFAR-LNDQELAELITFVRSSWGNGGE-AVTASQVKKMR 430 Score = 29.3 bits (64), Expect = 4e-04 Identities = 12/35 (34%), Positives = 20/35 (57%), Gaps = 5/35 (14%) Query: 322 GADTYVKECAICHRNDGGGV-----ARMFPPLAGN 351 G Y ++CA+CH +G G+ ++PPL G+ Sbjct: 586 GKKIYAEQCAVCHGENGEGLKSADGKMVYPPLWGD 620 Lambda K H 0.317 0.134 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1041 Number of extensions: 66 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 468 Length of database: 696 Length adjustment: 36 Effective length of query: 432 Effective length of database: 660 Effective search space: 285120 Effective search space used: 285120 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory