Align Phenylacetate permease, Ppa (characterized)
to candidate Dsui_0522 Dsui_0522 SSS sodium solute transporter
Query= TCDB::O50471 (520 letters) >FitnessBrowser__PS:Dsui_0522 Length = 557 Score = 645 bits (1665), Expect = 0.0 Identities = 319/523 (60%), Positives = 409/523 (78%), Gaps = 3/523 (0%) Query: 1 MNWTAISMFMVFVCFTLLVTRWAALRTRSASDFYTAGGGLTGMQNGLAIAGDMISAASFL 60 +N AI+MF+ FV TL +T WAA RT+S +DFYTAGGG+TG QNGLAIAGD +SAA+ L Sbjct: 35 LNVAAIAMFVAFVLSTLGITYWAANRTKSTADFYTAGGGITGFQNGLAIAGDYMSAATLL 94 Query: 61 GISAMMFMNGYDGLLYALGVLAGWPIILFLIAERLRNLGKYTFADVVSYRLAQTPVRLTS 120 G+++M+F GYDG +Y +G GWPIILFL+AERLRNLG++TFAD+ SYRL Q+ VR + Sbjct: 95 GLTSMVFAKGYDGFVYIVGFFVGWPIILFLMAERLRNLGRFTFADITSYRLDQSKVRTVA 154 Query: 121 AFGTLVVALMYLVAQMVGAGKLIELLFGISYLYAVMLVGVLMVAYVTFGGMLATTWVQII 180 A +L V L YL+ QMVGAG+LI+LLFG+ Y AV++VGVLM+ YVTFGGM+ATTWVQII Sbjct: 155 AISSLTVVLFYLITQMVGAGQLIKLLFGLDYEVAVVVVGVLMMVYVTFGGMIATTWVQII 214 Query: 181 KAVMLLSGTSFMAFMVLKHFGFSTEAMFASAVAVHAKGQAIMAPGGLLSNPVDAISLGLG 240 KA +LL G + M + + HFGF E + A VH G IM PG LL++PV+A+SL LG Sbjct: 215 KACLLLGGGTLMMLLAMSHFGFDFETLVTKATEVHKDGTKIMGPGSLLADPVNAVSLSLG 274 Query: 241 MMFGTAGLPHILMRFFTVSDAKEARKSVFYATGFIGYFYLLLIVIGFGAIVMVGTEPSY- 299 +MFGTAGLPHILMRFFTV DAK+ARKSVF ATGFIG+F+L+++++G AIV+VGT P + Sbjct: 275 LMFGTAGLPHILMRFFTVPDAKQARKSVFVATGFIGFFFLVVVLLGMSAIVLVGTNPEFF 334 Query: 300 --RDATGAIIGGGNMIAVHLAQAVGGNLFLGFISAVAFATILAVVAGLALSGASAVSHDL 357 + G +IGGGNM+A+HLA+ VGGN+FLGF+SAVAFATILAVV+GLAL+GASA+SHD+ Sbjct: 335 EGGNVGGKMIGGGNMVAMHLAKFVGGNIFLGFLSAVAFATILAVVSGLALAGASAISHDI 394 Query: 358 YACVIRQGKATEQEEMRVSRIATLLIGLLAVLLGLMFESQNIAFLSGLVLAVAASVNFPV 417 YA VI +GK E++VS+IA++ IGL A+ LG+MFE QN+AF+ GL +AAS NFPV Sbjct: 395 YANVICKGKPKGGSELKVSKIASIFIGLAAIGLGIMFEKQNLAFMVGLAFGIAASANFPV 454 Query: 418 LLLSMFWKGLTTRGAVCGSMAGLASAVLLVVLGPAVWVNVLHHEKALFPYSNPALFSMSL 477 L+LSM+WKGLTT+GA+ G++ GL +AV+ VVL AVWV VL +A+FPY PALFSM L Sbjct: 455 LILSMYWKGLTTKGAIAGTICGLTAAVVFVVLSKAVWVTVLGKAQAIFPYDQPALFSMPL 514 Query: 478 AFLSAWVFSVTDSSERASEERGRYLAQFIRSMTGIGAAGASKH 520 AFL A+V S D+S +A E + Q++R+ TG+GAAGAS H Sbjct: 515 AFLIAFVVSKLDTSAQAKREIEAFDDQYVRAQTGLGAAGASNH 557 Lambda K H 0.328 0.139 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 895 Number of extensions: 42 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 557 Length adjustment: 35 Effective length of query: 485 Effective length of database: 522 Effective search space: 253170 Effective search space used: 253170 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory