Align Acetoacetate--CoA ligase (EC 6.2.1.16) (characterized)
to candidate Dsui_2069 Dsui_2069 acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II
Query= reanno::acidovorax_3H11:Ac3H11_3009 (578 letters) >FitnessBrowser__PS:Dsui_2069 Length = 529 Score = 194 bits (494), Expect = 6e-54 Identities = 168/537 (31%), Positives = 243/537 (45%), Gaps = 45/537 (8%) Query: 43 PEREALVSVHQG--------RRYTYAQLQTEAHRLASALLGMGLTPGDRVGIWSHNNAEW 94 P++ AL++ G R +TYAQL E +R A ALL +G+ GD V + +N + Sbjct: 19 PDKPALIAWEGGDHDTPAQRRVWTYAQLNAEVNRHAHALLALGVQKGDVVAAFLYNTPAF 78 Query: 95 VLMQLATAQVGLVLVNINPAYRTAEVEYALNKVGCKLLVSMARFKTSDYLGMLRELAPEW 154 V LA A+VG V IN YR A E A F D G + L E Sbjct: 79 VFSLLAAARVGAVFNPIN--YRLAAQELA--------------FILED--GQAKVLLFEK 120 Query: 155 QGQQPGHLQAAKLPQLKTVVWIDDEAGQGADEPGLLRFTELIARGNAADPRLAQVAAGLQ 214 +G + ++ A+ + T WI ++ A R +L+ A P + ++ Sbjct: 121 EGCEV--VEKAREHGVPTAHWIYADS-DAAPAFATARLDQLVRHQPATLPPVI-----VE 172 Query: 215 ATDPINIQFTSGTTGFPKGATLTHRNILNNGFFIGECMKLTPADRLCIPVPLYHCFGMVL 274 D + +TSGTTG PKG THR+ L + + + M L+ D PL H + Sbjct: 173 ENDNCILMYTSGTTGRPKGVLHTHRSKLAHNAMMHQAMTLSREDVGLAVAPLNHTAELHT 232 Query: 275 GNLACFTHGATIVYPNDGFDPLTVLQTVQDERCTGLHGVPTMFIAELDHPRFAEFNLSTL 334 L GAT V FD + + E+ T PTM L HP A +LS+L Sbjct: 233 SFLPRLQLGATQVLLRR-FDAGEAWRLTEVEKVTHFFAAPTMVTLLLHHPDVASRDLSSL 291 Query: 335 RTGIMAGSPCPTEVMKRVVEQMNLREITIAYGMTETSPVSCQSSTDTPLSKRVST-VGQV 393 R G+ +++ +++ + I YG TE P LS S + + Sbjct: 292 RLVEYGGASMAPHLIREWDKKVGAGLVQI-YGTTEMGPCMSVLYPHEQLSHAGSAGLPSL 350 Query: 394 QPHLEVKIVDPDTGAVVPIG-----QRGEFCTKGYSVMHGYWGDEAKTREAIDEGGWMHT 448 L V V D P + GE +G +M GY A+ GW HT Sbjct: 351 NHDLLVARVKADGSPSDPADLAAPDEVGEILVRGPCMMGGYLNRPEANARAL-AFGWYHT 409 Query: 449 GDLATMDAEGYVNIVGRIKDMVIRGGENIYPREIEEFLYRHPQVQDVQVVGVPDQKYGEE 508 GDL ++D EGY+ I RI M+ G EN+YPRE+E+ L HP V +V VVG PD +G+ Sbjct: 410 GDLGSLDKEGYLWIRDRIDHMINSGAENVYPREVEDALVEHPGVLEVAVVGEPDDTWGQV 469 Query: 509 LCAWIIAKPGTQPTEDDIRAFC--KGQIAHYKVPRYIRFVTSFPMTVTGKIQKFKIR 563 + A ++AKPG T++ + F ++AHYK PR F+ + P T +GKIQK +R Sbjct: 470 VAAHVVAKPGATLTQEALDHFLLEGDRLAHYKRPRRYHFIEALPKTTSGKIQKHLLR 526 Lambda K H 0.320 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 702 Number of extensions: 34 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 578 Length of database: 529 Length adjustment: 36 Effective length of query: 542 Effective length of database: 493 Effective search space: 267206 Effective search space used: 267206 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory