Align Acetoacetate--CoA ligase (EC 6.2.1.16) (characterized)
to candidate Dsui_3212 Dsui_3212 acyl-CoA synthetase (AMP-forming)/AMP-acid ligase II
Query= reanno::acidovorax_3H11:Ac3H11_3009 (578 letters) >FitnessBrowser__PS:Dsui_3212 Length = 555 Score = 213 bits (543), Expect = 1e-59 Identities = 165/542 (30%), Positives = 256/542 (47%), Gaps = 17/542 (3%) Query: 29 QTIGAFFADMVARQPEREALVSVHQGRRYTYAQLQTEAHRLASALLG-MGLTPGDRVGIW 87 +++G F A+ +R A +++ G TY +L + A+ L + L G RV + Sbjct: 23 KSLGQLFEQSCAQYRDRVAYINMGVG--ITYGELDRLSRDFAAYLQDVLKLPQGARVALM 80 Query: 88 SHNNAEWVLMQLATAQVGLVLVNINPAYRTAEVEYALNKVGCKLLVSMARFKTS--DYLG 145 N ++ + + G V+VN NP Y E+E+ L G + +V + F + L Sbjct: 81 MPNLLQYPVCMFGALRAGYVVVNCNPLYTHRELEHQLKDSGAEAIVIVENFAHTLEQALP 140 Query: 146 MLRELAPEWQGQQPGHLQAAKLPQLKTVVWIDDEAGQGADEPGLLRFTELIARGNAADPR 205 ++ L L A K + VV + P ++F +ARG A R Sbjct: 141 LVPGLKHVIVTSLGDMLGALKGTVVNLVVRHVKKMVPAWKLPRHVKFKAAMARGKGATLR 200 Query: 206 LAQVAAGLQATDPINIQFTSGTTGFPKGATLTHRNILNNGFFIGECMK--LTPADRLCIP 263 QV D +Q+T GTTG KGA L HRNI+ N ++ L +L I Sbjct: 201 PVQVGH----EDIAYLQYTGGTTGVAKGAMLLHRNIIANLQQAHAWIEPFLHKDQQLIIT 256 Query: 264 -VPLYHCFGMVLGNLACFTHGATIVYPNDGFDPLTVLQTVQDERCTGLHGVPTMFIAELD 322 +PLYH F + L GAT V + D ++ + + T + GV T+F A L+ Sbjct: 257 ALPLYHIFSLTANCLTFLKIGATNVLITNPRDIPGFVKELAQYKFTVITGVNTLFNALLN 316 Query: 323 HPRFAEFNLSTLRTGIMAGSPCPTEVMKRVVEQMNLREITIAYGMTETSPVSCQSSTDTP 382 +P FA+ + S LR + G V ++ Q+ + + AYG+TETSP + + D Sbjct: 317 NPDFAKLDFSALRAALGGGMAVQKSVAQKW-RQVTGKPLIEAYGLTETSPAATINPLD-- 373 Query: 383 LSKRVSTVGQVQPHLEVKIVDPDTGAVVPIGQRGEFCTKGYSVMHGYWGDEAKTREAIDE 442 L + +G E+ I D D G +P+GQ GE C +G VM GYW +T Sbjct: 374 LGEFNGAIGLPISSTEIVIRD-DLGNDLPVGQAGEICIRGPQVMKGYWLRPDETATVFYA 432 Query: 443 GGWMHTGDLATMDAEGYVNIVGRIKDMVIRGGENIYPREIEEFLYRHPQVQDVQVVGVPD 502 G++ TGD+ MD +G+V IV R KDM++ G N+YP E+E + HP V +V VGVP Sbjct: 433 DGFLRTGDVGVMDEKGFVRIVDRKKDMILVSGFNVYPNEVEAVVAMHPAVMEVAAVGVPS 492 Query: 503 QKYGEELCAWIIAKPGTQPTEDDIRAFCKGQIAHYKVPRYIRFVTSFPMTVTGKIQKFKI 562 + GE + +++ K T++ + A CK + YKVP + F P T GKI + + Sbjct: 493 EHSGEAVKIFVVLK-DKSVTKEQLIAHCKENLTGYKVPHLVEFRDDLPKTNVGKILRRAL 551 Query: 563 RD 564 ++ Sbjct: 552 KE 553 Lambda K H 0.320 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 715 Number of extensions: 39 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 578 Length of database: 555 Length adjustment: 36 Effective length of query: 542 Effective length of database: 519 Effective search space: 281298 Effective search space used: 281298 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory