GapMind for catabolism of small carbon sources

 

Aligments for a candidate for paaJ1 in Dechlorosoma suillum PS

Align 3-ketoacyl-CoA thiolase, peroxisomal; Acetyl-CoA acyltransferase; Beta-ketothiolase; Peroxisomal 3-oxoacyl-CoA thiolase; EC 2.3.1.16 (characterized)
to candidate Dsui_0976 Dsui_0976 acetyl-CoA acetyltransferase

Query= SwissProt::P09110
         (424 letters)



>lcl|FitnessBrowser__PS:Dsui_0976 Dsui_0976 acetyl-CoA
           acetyltransferase
          Length = 393

 Score =  236 bits (602), Expect = 9e-67
 Identities = 151/396 (38%), Positives = 222/396 (56%), Gaps = 22/396 (5%)

Query: 38  VVVVHGRRTAICRAGRGGFKDTTPDELLSAVMTAVLKDVNLRPEQLGDICVGNVLQPGAG 97
           +V+V   RT +    +G F   T  +L +  + A ++   ++PEQ+ ++  GNVLQ G G
Sbjct: 5   IVIVSVARTPM-GGFQGDFNSLTAPQLGATAIKAAVERAGIKPEQVEEVVFGNVLQAGVG 63

Query: 98  AIMARIAQFLSDIPETVPLSTVNRQCSSGLQAVASIAGGIRNGSYDIGMACGVESMSLAD 157
              AR A   + +P +   +T+++ C S L++V  +   +  GSY+IG+A G ESMS A 
Sbjct: 64  QAPARQAALGAGLPLSAGCTTIHKVCGSALKSVMMVHDSLLAGSYEIGVAGGQESMSNAP 123

Query: 158 ------RGNPGNITSRLMEK------EKARDCLIPMGITSENVAERFGISREKQDTFALA 205
                 RG       +L++       E A      MG  +E  AE +G +RE QD +A+ 
Sbjct: 124 YLLPKARGGYRLGHGQLLDHMFFDGLEDAYQKGRLMGTFAEECAESYGFTREAQDEWAIQ 183

Query: 206 SQQKAARAQSKGCFQAEIVPVTTTVHDDKGTKRSITVTQDEGIRP-STTMEGLAKLKPAF 264
           S  +A +A  +G F+ EI PVT       G K  + V QDE  +P    +E +  LKPAF
Sbjct: 184 STVRAQKAIKEGLFKWEIAPVTIA-----GKKGDVVVDQDE--QPLKAQIEKIPALKPAF 236

Query: 265 KKDGSTTAGNSSQVSDGAAAILLARRSKAEELGLPILGVLRSYAVVGVPPDIMGIGPAYA 324
           KKDG+ TA NSS +SDGAAA++L + SKA+ LGL  +  +  +      P++    P +A
Sbjct: 237 KKDGTVTAANSSSISDGAAALVLMKESKAKVLGLAPIAKIVGHTTHAQEPNLFTTAPVFA 296

Query: 325 IPVALQKAGLTVSDVDIFEINEAFASQAAYCVEKLRLPPEKVNPLGGAVALGHPLGCTGA 384
           +   +QK G  V+DVD++EINEAFA      ++ L+L P KVN  GGA ALGHP+G +GA
Sbjct: 297 MEKLMQKTGWNVADVDLWEINEAFAVVTMAAIKDLKLDPAKVNVHGGACALGHPIGASGA 356

Query: 385 RQVITLLNELKRRGKRAYGVVSMCIGTGMGAAAVFE 420
           R ++TL+  LK+ GK+  GV S+CIG G   A   E
Sbjct: 357 RILVTLIGALKQYGKKK-GVASLCIGGGEAVAVGVE 391


Lambda     K      H
   0.317    0.134    0.385 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 402
Number of extensions: 17
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 424
Length of database: 393
Length adjustment: 31
Effective length of query: 393
Effective length of database: 362
Effective search space:   142266
Effective search space used:   142266
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer. Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory