Align Benzoate--CoA ligase; Benzoyl-CoA synthetase; EC 6.2.1.25 (characterized)
to candidate 5209735 Shew_2188 long-chain-fatty-acid--CoA ligase (RefSeq)
Query= SwissProt::Q8GQN9 (527 letters) >FitnessBrowser__PV4:5209735 Length = 557 Score = 167 bits (423), Expect = 9e-46 Identities = 148/550 (26%), Positives = 243/550 (44%), Gaps = 50/550 (9%) Query: 14 PAIKIPERYNAADDLIGRNLLAGRGGKTVYIDDAGSYTYDELALRVNRCGSALRTTLGLQ 73 PAI ++Y++ DL + +A + +++ + TY +L R + L+ L LQ Sbjct: 14 PAIIDAKQYSSLIDLF-ESSVAKYADQPAFVNMGATLTYRKLEERSRAFAAYLQNELKLQ 72 Query: 74 PKDRVLVCVLDGIDFPTTFLGAIKGGVVPIAINTLLTESDYEYMLTDSAARVAVVSQELL 133 DRV + + + + +P G ++ G+V + +N L T + ++ L DS A+ VV Sbjct: 73 KGDRVAIMMPNLLQYPIALFGILRAGMVVVNVNPLYTPRELKHQLNDSGAKAIVVVSNFA 132 Query: 134 PLFAPMLGKVPTLEHLVVAGGAGE-----------------------------DSLAALL 164 ++ + P V+ G G+ S+ L Sbjct: 133 NTLEQVVEQTPVKS--VILTGLGDLLSAPKRTLVNFVVKYIKKMVPKYHLPHAISMRQSL 190 Query: 165 ATGSEQFEAAPT-RPDDHCFWLYSSGSTGAPKGTVHIHSDLIHT---AELYARPILGIRE 220 + G PT + DD F Y+ G+TG KG + H +++ A+ P+L + Sbjct: 191 SKGRRLQYVKPTIKGDDIAFLQYTGGTTGVSKGAMLTHGNIVSNLLQADAAYSPLLADGK 250 Query: 221 GDVVFSAAKLFFAYGLGNGLIFPLAVGATAVLMAE-RPTPAAVFERLRRHQPDIFYGVPT 279 + V +A L+ + L + L GA +L+ R PA V E L++H GV T Sbjct: 251 -EFVVTALPLYHIFALTVNCLLFLHKGANNLLITNPRDIPAFVSE-LKKHPFTALTGVNT 308 Query: 280 LYASMLANPDCPKEGELRLRACTSAGEALPEDVGRRWQARFGVDILDGIGSTE---MLHI 336 L+ +++++ + L+ G A+ V +WQ +L+G G TE +L Sbjct: 309 LFNALVSSEEFKTLDFSNLKLSIGGGMAVQRAVADKWQGITKTRLLEGYGLTEASPLLTC 368 Query: 337 FLSNRAGDVHYGTSGKPVPGYRLRLIDEDGAEITTAGVAGELQISGPSSAVMYWNNPEKT 396 N G + G+ G PV +++ DE+G + G GEL GP YW PE+T Sbjct: 369 CPYNLEG--YNGSIGFPVANTDMQVRDEEG-NVLPQGETGELFAKGPQVMKGYWQRPEET 425 Query: 397 AATFMGE-WTRSGDKYLVNDEGYYVYAGRSDDMLKVSGIYVSPIEVESALIAHEAVLEAA 455 A + + +GD ++++G++ R DM+ VSG V P EVE + H VLE A Sbjct: 426 AKVIDKDGYLATGDIGYMDEQGFFFIVDRKKDMILVSGFNVFPNEVEEVVALHPKVLEVA 485 Query: 456 VVGWEDEDHLIKPKAFIVLKPGYGAGEALRTDLKAHVKNLLAPYKYPRWIEFVDDLPKTA 515 VG E K F+V K + H ++ L YK P+ +EF D+LPK+ Sbjct: 486 AVGVPHEVSGELVKVFVVPKD----KSLTEEQVIKHCRHHLTGYKIPKLVEFRDELPKSN 541 Query: 516 TGKIQRFKLR 525 GKI R +LR Sbjct: 542 VGKILRRELR 551 Lambda K H 0.319 0.138 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 653 Number of extensions: 37 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 527 Length of database: 557 Length adjustment: 35 Effective length of query: 492 Effective length of database: 522 Effective search space: 256824 Effective search space used: 256824 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory