GapMind for catabolism of small carbon sources

 

Alignments for a candidate for D-LDH in Shewanella loihica PV-4

Align Respiratory FAD-dependent D-lactate dehydrogenase Dld; EC 1.1.2.4 (characterized, see rationale)
to candidate 5210708 Shew_3136 FAD linked oxidase domain-containing protein (RefSeq)

Query= uniprot:Q8EGS3
         (934 letters)



>FitnessBrowser__PV4:5210708
          Length = 934

 Score = 1580 bits (4092), Expect = 0.0
 Identities = 768/934 (82%), Positives = 838/934 (89%)

Query: 1   MSINYKEVINDLRTQLGDRPVTDDPVRRFAWSTDASYFRIVPEVVVHAETLEQVKLTLTV 60
           MSINY  V+ DLR +LGD  V+DD VRRFAWSTDASYFRIVPEVVVHAETLE  + TL V
Sbjct: 1   MSINYSAVVADLRAKLGDEAVSDDAVRRFAWSTDASYFRIVPEVVVHAETLEDARDTLEV 60

Query: 61  ARKHNAPVTFRAAGTSLSGQAIGEGILLILGHDGFRKIEVSSDAKQITLGAAVIGSDANA 120
           AR+HNAPVTFRAAGTSLSGQAIGEGILLILGHDGFRKI VS D  QI+LGAAVIG DAN 
Sbjct: 61  ARQHNAPVTFRAAGTSLSGQAIGEGILLILGHDGFRKIAVSEDHNQISLGAAVIGGDANL 120

Query: 121 VLAPLNRKIGPDPATIASAKIGGIVANNASGMCCGTAQNSYQTIASAKLLFADGTELDTG 180
            L P N+KIGPDPAT+ASA +GGIV+NNASGMCCGTAQNSYQTIASAKLLFADGT LDTG
Sbjct: 121 ALKPFNKKIGPDPATLASAMVGGIVSNNASGMCCGTAQNSYQTIASAKLLFADGTRLDTG 180

Query: 181 CEKSKAEFAKTHGKLLQDLSELSHLTRHNSALAERIRKKYSIKNTTGYGINSLIDFTDPF 240
           CE+SK  F ++H +LL +L++L+ LT  N  LA+RIRKKYSIKNTTGY IN+L+DF DPF
Sbjct: 181 CERSKEAFRESHQQLLSELTDLAKLTASNPVLADRIRKKYSIKNTTGYSINALVDFEDPF 240

Query: 241 DIINHLMVGMEGTLAFINEVTYHTVNEAKFKASAMAVFHNMEDAARAIPLINGESVSAAE 300
           ++INHL+VG EGTLAF+ EVTY+TV+EAKFKASAMAVF NMEDAARAIP I  +SV+AAE
Sbjct: 241 ELINHLIVGAEGTLAFVEEVTYNTVDEAKFKASAMAVFFNMEDAARAIPPIKCDSVAAAE 300

Query: 301 LLDWPSIKAVTGKPGMPDWLSELPALSAILLIESRADDAQTLEHYTQDVTAKLAGFDFIR 360
           LLDW SIKAVTGK GMPDWLSELP  +AILLIESRA+D  TL+ YTQDV AKLA  +  R
Sbjct: 301 LLDWASIKAVTGKKGMPDWLSELPEGAAILLIESRANDEATLDAYTQDVIAKLAHIETER 360

Query: 361 PMEFSTNPAVYDKYWAMRKGLFPIVGGERPKGTSVIIEDVAFELEHLAAAAHDITELFHK 420
           P+ FS +P VY KYWAMR GLFPI+GGERPKGTSVIIEDVAFELEHLA AA D+T LFHK
Sbjct: 361 PISFSRDPEVYSKYWAMRSGLFPIIGGERPKGTSVIIEDVAFELEHLANAATDLTALFHK 420

Query: 421 HGYPEGCIYGHALAGNFHFIITPAFTTQADIDRFHAFMDDIADMVINKYNGSMKAEHGTG 480
           HGYPEG IYGHALAGNFHFIITP F +Q DIDRFH FM D+A+MVINKY+GSMKAEHGTG
Sbjct: 421 HGYPEGVIYGHALAGNFHFIITPTFASQEDIDRFHGFMQDVAEMVINKYDGSMKAEHGTG 480

Query: 481 RAVAPFVEKEWGQDAYTLMKNIKQVFDPQGILNPGVILNDDSNIHVKNIKPCPVVDDFVD 540
           RAVAPFVE EWG DAYTLMK IKQ+FDPQG+LNPGVILNDD+N+HVKNIKPCPVVDDFVD
Sbjct: 481 RAVAPFVEMEWGADAYTLMKRIKQIFDPQGLLNPGVILNDDANVHVKNIKPCPVVDDFVD 540

Query: 541 KCIECGFCEKTCPTSALNFSPRQRIATLREIERLEQSGDKAAAAKMRADAKYDVIDTCAA 600
           +CIECGFCEKTCPTSALNF+PRQRIATLREI RLE SGDK AA +MRA AKYDV+DTCAA
Sbjct: 541 RCIECGFCEKTCPTSALNFTPRQRIATLREIARLEASGDKQAAEEMRAAAKYDVVDTCAA 600

Query: 601 CQLCTIACPVDNSMGQLVRKLRTPYISTTEQKVLDFQAKHFGAVNQVISTGFDVLGVIHK 660
           CQLCTIACPVDNSMGQLVRKLRTPYI+TTEQKVLDFQAKHFGAVNQVISTGFDVL +IHK
Sbjct: 601 CQLCTIACPVDNSMGQLVRKLRTPYITTTEQKVLDFQAKHFGAVNQVISTGFDVLSIIHK 660

Query: 661 ITGDGITNALMKTGRLISKEVPYWNPDFPKGGKLPKPSPAKAGQETVVYFPACGGRTFGP 720
           +TGD +TN LMK GR++SKEVPYWNPDF KGGKLPKPSPA   +ETVVYFPACGGRTFGP
Sbjct: 661 VTGDSVTNGLMKVGRMVSKEVPYWNPDFAKGGKLPKPSPASPDKETVVYFPACGGRTFGP 720

Query: 721 TPKDPDNRTLPEVVVTLLERAGYNVITPEKTRDLCCGQMWESKGDFKNADAKRQELIDVL 780
           TPKDPDNRTLPEVVVTLLERAGYNV+TP+ TR LCCGQMWESKGDFKNADAKR ELID L
Sbjct: 721 TPKDPDNRTLPEVVVTLLERAGYNVVTPDNTRHLCCGQMWESKGDFKNADAKRDELIDAL 780

Query: 781 SKMSNGGKIPVLVDALSCTYRTLTGNPQVQITDLVEFMHDKLLDKLSINKKVNVALHLGC 840
           S +S+ GK+PV+VDALSCTYRTLTGNP+V+ITDLVEFMHDK+L KL+  KKVNVALHLGC
Sbjct: 781 SALSDNGKVPVVVDALSCTYRTLTGNPKVEITDLVEFMHDKILPKLTFTKKVNVALHLGC 840

Query: 841 SARKMKLEPKMQAIANACSAQVLKPAGIECCGYAGEKGLYKPEINASALRNIKKLIPVEV 900
           SARKMKLEPKMQA+A+ACS  V  P GIECCGYAGEKGLYKPEINASALRNIKKLIPV++
Sbjct: 841 SARKMKLEPKMQALADACSNGVKLPEGIECCGYAGEKGLYKPEINASALRNIKKLIPVDI 900

Query: 901 KEGYYANRMCEVGLTQHSGISYRHLAYLLEECSR 934
           KEGYYANRMCEVGLTQHSGISYRHLAYLLEECSR
Sbjct: 901 KEGYYANRMCEVGLTQHSGISYRHLAYLLEECSR 934


Lambda     K      H
   0.319    0.135    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2401
Number of extensions: 83
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 934
Length of database: 934
Length adjustment: 43
Effective length of query: 891
Effective length of database: 891
Effective search space:   793881
Effective search space used:   793881
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 57 (26.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory