Align lactaldehyde dehydrogenase (EC 1.2.1.22); D-glyceraldehyde dehydrogenase (NADP+) (EC 1.2.1.89) (characterized)
to candidate 5208455 Shew_0967 aldehyde dehydrogenase (RefSeq)
Query= BRENDA::P25553 (479 letters) >lcl|FitnessBrowser__PV4:5208455 Shew_0967 aldehyde dehydrogenase (RefSeq) Length = 498 Score = 251 bits (641), Expect = 4e-71 Identities = 153/483 (31%), Positives = 260/483 (53%), Gaps = 9/483 (1%) Query: 2 SVPVQHPMYIDGQFVTWRGDAWIDVVNPATEAVISRIPDGQAEDARKAIDAAERA--QPE 59 S+ +Q +I+G++ + D ++P V++++ DA +A+ A + + Sbjct: 16 SLVIQGQAFINGEYCAADSNDTFDCISPIDGRVLTQVASCDLLDANRAVANAREVFERGD 75 Query: 60 WEALPAIERASWLRKISAGIRERASEISALIVEEGGK-IQQLAEVEVAFTADYIDYMAEW 118 W LP ++R + + + + E++ L + GK I+ V+VA A + + E Sbjct: 76 WSQLPPVKRKQVMIRFADLLEANRDELALLETLDMGKPIRYSGAVDVAGAARALRWSGEA 135 Query: 119 ARRYEGEIIQSDRPGENILLFKRALGVTTGILPWNFPFFLIARKMAPALLTGNTIVIKPS 178 + EI + E ++ + +GV I+PWNFP + K+ PAL TGN++V+KPS Sbjct: 136 VDKIYDEIAPTAH-NEIGMITREPVGVVAAIVPWNFPLLMACWKLGPALATGNSVVLKPS 194 Query: 179 EFTPNNAIAFAKIVDEIGLPRGVFNLVLGRGETVGQELAGNPKVAMVSMTGSVSAGEKIM 238 E +P AI A++ E G+P+GV N++ G G TVG+ LA + V + TGS +++M Sbjct: 195 EKSPLTAIRMAQLAIEAGIPKGVLNVLPGYGHTVGKALALHMDVDTLVFTGSTKIAKQLM 254 Query: 239 ATAAK-NITKVCLELGGKAPAIVMDDA-DLELAVKAIVDSRVINSGQVCNCAERVYVQKG 296 A + N+ +V LE GGK+P IV +DA +L+ A A + N G+VC R+ V+ G Sbjct: 255 IYAGESNMKRVWLEAGGKSPNIVFNDAPNLKEAAIAAASAIAFNQGEVCTAGSRLLVESG 314 Query: 297 IYDQFVNRLGEAMQAVQFGNPAERNDIAMGPLINAAALERVEQKVARAVEEGARVAFGGK 356 + ++ +N + MQA Q G+P + G +++ LE V + + V EGA++ GG+ Sbjct: 315 VKEELINLIEAEMQAWQPGHPLD-PATTCGAVVDQQQLENVLRYIRAGVAEGAQLRQGGQ 373 Query: 357 AV--EGKGYYYPPTLLLDVRQEMSIMHEETFGPVLPVVAFDTLEDAISMANDSDYGLTSS 414 V E G Y PT+ +V+ EM+I EE FGPVL V+ FD +E+AI + ND+ YGL + Sbjct: 374 QVLAETGGVYVAPTIFANVKNEMTIAKEEIFGPVLSVITFDGMEEAIRIGNDTIYGLAAG 433 Query: 415 IYTQNLNVAMKAIKGLKFGETYINRENFEAMQGFHAGWRKSGIGGADGKHGLHEYLQTQV 474 ++T +++ A K K L+ G +IN + M G+++SG G H +Y + + Sbjct: 434 VWTSDISKAHKTAKALRSGMVWINHYDGGDMTAPFGGYKQSGNGRDKSLHAFDKYTEIKA 493 Query: 475 VYL 477 ++ Sbjct: 494 TWI 496 Lambda K H 0.318 0.135 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 538 Number of extensions: 25 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 479 Length of database: 498 Length adjustment: 34 Effective length of query: 445 Effective length of database: 464 Effective search space: 206480 Effective search space used: 206480 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory