GapMind for catabolism of small carbon sources

 

Alignments for a candidate for xacF in Shewanella loihica PV-4

Align α-ketoglutaric semialdehyde dehydrogenase subunit (EC 1.2.1.26) (characterized)
to candidate 5209916 Shew_2364 aldehyde dehydrogenase (RefSeq)

Query= metacyc::G1G01-1343-MONOMER
         (525 letters)



>FitnessBrowser__PV4:5209916
          Length = 521

 Score =  470 bits (1210), Expect = e-137
 Identities = 253/515 (49%), Positives = 331/515 (64%), Gaps = 5/515 (0%)

Query: 6   NLLIGQRPVTGS----RDAIRAIDPTTGQTLEPAYLGGTGEHVAQACALAWAAFDAYRET 61
           N L GQ  + G      DA ++ +P     ++  +   + E +AQA   A  AF++YR  
Sbjct: 7   NRLTGQHYINGEWQGEADAFQSFNPVANTQIDWHFASASDEQLAQATKAAEQAFNSYRNK 66

Query: 62  SLEQRAEFLEAIATQIEALGDALIDRAVIETGLPKARIQGERGRTCTQLRTFARTVRAGE 121
           S  +RA FL +IA  IEA  + +I+ A +ETGLP AR+QGE GRTC QLR FA+ +    
Sbjct: 67  SDSERAAFLSSIAEHIEADKETIIEAAHLETGLPLARLQGETGRTCGQLRLFAQNL-VNP 125

Query: 122 WLDVRIDSALPERQPLPRADLRQRQVALGPVAVFGASNFPLAFSVAGGDTASALAAGCPV 181
              +  D A PERQPLP+ D R  +VALGPVAVFGASNFPLAFS AGGDTASALAAGCPV
Sbjct: 126 IEQLIADMAQPERQPLPKPDTRLGKVALGPVAVFGASNFPLAFSTAGGDTASALAAGCPV 185

Query: 182 VVKAHSAHPGTSELVGQAVAQAVKQCGLPEGVFSLLYGSGREVGIALVSDPRIKAVGFTG 241
           +VK H AHP TSELV QA+ +A+K C +P GVFSLL G   ++   LV  P IKAVGFTG
Sbjct: 186 IVKGHPAHPATSELVTQAIEKAIKACDMPAGVFSLLQGHTPDLSTGLVEAPEIKAVGFTG 245

Query: 242 SRSGGMALCQAAQARPEPIPVYAEMSSINPVFLFDAALQARAEALAQGFVASLTQGAGQF 301
           S   G  L     ARPEPIP Y E+ S NP FL    L  +AE LA+  V S+  G GQF
Sbjct: 246 SLKVGRILADRCAARPEPIPFYGELGSTNPQFLLPGILAEQAETLAETQVQSMMMGHGQF 305

Query: 302 CTNPGLVIARQGPALQRFITAAAGYVQQGAAQTMLTPGIFSAYQAGIAALADNPHAQAIT 361
           CT+PGL++A +G AL R+    +  + + AA  MLTPGI + YQ    AL  +P    ++
Sbjct: 306 CTSPGLIVAVKGEALTRYCDRLSQTLAEQAASAMLTPGIAATYQQQTEALLAHPQLTLLS 365

Query: 362 SGQAGQGPNQCQAQLFVTQAEAFLADPALQAEVFGAASLVVACTDDEQVRQVAEHLEGQL 421
            G+A +  +  +       A  +LAD ALQ EVFG  ++VV C D  Q++ VAE +EGQL
Sbjct: 366 QGKAAEASHHTRPAAVKVDAAGYLADSALQQEVFGPFAIVVECQDAAQMQAVAEQIEGQL 425

Query: 422 TATLQLDEADIDSARALLPTLERKAGRILVNGWPTGVEVCDAMVHGGPFPATSDARTTSV 481
           TATL  +E+D   A +L+  + ++ GR++ N  PTGVEVC +M HGGP+PA++D+R+TSV
Sbjct: 426 TATLHGNESDWAHAHSLVDAIGQRVGRLIFNQMPTGVEVCHSMNHGGPYPASTDSRSTSV 485

Query: 482 GTAAILRFLRPVCYQDVPDALLPQALKHGNPLQLR 516
           G+ AI R+ RP+CYQ++P ALLP+AL+ G  L  R
Sbjct: 486 GSMAIHRWTRPICYQNMPTALLPEALRDGQSLLKR 520


Lambda     K      H
   0.319    0.134    0.391 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 741
Number of extensions: 20
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 525
Length of database: 521
Length adjustment: 35
Effective length of query: 490
Effective length of database: 486
Effective search space:   238140
Effective search space used:   238140
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory