Align α-ketoglutaric semialdehyde dehydrogenase subunit (EC 1.2.1.26) (characterized)
to candidate 5209916 Shew_2364 aldehyde dehydrogenase (RefSeq)
Query= metacyc::G1G01-1343-MONOMER (525 letters) >FitnessBrowser__PV4:5209916 Length = 521 Score = 470 bits (1210), Expect = e-137 Identities = 253/515 (49%), Positives = 331/515 (64%), Gaps = 5/515 (0%) Query: 6 NLLIGQRPVTGS----RDAIRAIDPTTGQTLEPAYLGGTGEHVAQACALAWAAFDAYRET 61 N L GQ + G DA ++ +P ++ + + E +AQA A AF++YR Sbjct: 7 NRLTGQHYINGEWQGEADAFQSFNPVANTQIDWHFASASDEQLAQATKAAEQAFNSYRNK 66 Query: 62 SLEQRAEFLEAIATQIEALGDALIDRAVIETGLPKARIQGERGRTCTQLRTFARTVRAGE 121 S +RA FL +IA IEA + +I+ A +ETGLP AR+QGE GRTC QLR FA+ + Sbjct: 67 SDSERAAFLSSIAEHIEADKETIIEAAHLETGLPLARLQGETGRTCGQLRLFAQNL-VNP 125 Query: 122 WLDVRIDSALPERQPLPRADLRQRQVALGPVAVFGASNFPLAFSVAGGDTASALAAGCPV 181 + D A PERQPLP+ D R +VALGPVAVFGASNFPLAFS AGGDTASALAAGCPV Sbjct: 126 IEQLIADMAQPERQPLPKPDTRLGKVALGPVAVFGASNFPLAFSTAGGDTASALAAGCPV 185 Query: 182 VVKAHSAHPGTSELVGQAVAQAVKQCGLPEGVFSLLYGSGREVGIALVSDPRIKAVGFTG 241 +VK H AHP TSELV QA+ +A+K C +P GVFSLL G ++ LV P IKAVGFTG Sbjct: 186 IVKGHPAHPATSELVTQAIEKAIKACDMPAGVFSLLQGHTPDLSTGLVEAPEIKAVGFTG 245 Query: 242 SRSGGMALCQAAQARPEPIPVYAEMSSINPVFLFDAALQARAEALAQGFVASLTQGAGQF 301 S G L ARPEPIP Y E+ S NP FL L +AE LA+ V S+ G GQF Sbjct: 246 SLKVGRILADRCAARPEPIPFYGELGSTNPQFLLPGILAEQAETLAETQVQSMMMGHGQF 305 Query: 302 CTNPGLVIARQGPALQRFITAAAGYVQQGAAQTMLTPGIFSAYQAGIAALADNPHAQAIT 361 CT+PGL++A +G AL R+ + + + AA MLTPGI + YQ AL +P ++ Sbjct: 306 CTSPGLIVAVKGEALTRYCDRLSQTLAEQAASAMLTPGIAATYQQQTEALLAHPQLTLLS 365 Query: 362 SGQAGQGPNQCQAQLFVTQAEAFLADPALQAEVFGAASLVVACTDDEQVRQVAEHLEGQL 421 G+A + + + A +LAD ALQ EVFG ++VV C D Q++ VAE +EGQL Sbjct: 366 QGKAAEASHHTRPAAVKVDAAGYLADSALQQEVFGPFAIVVECQDAAQMQAVAEQIEGQL 425 Query: 422 TATLQLDEADIDSARALLPTLERKAGRILVNGWPTGVEVCDAMVHGGPFPATSDARTTSV 481 TATL +E+D A +L+ + ++ GR++ N PTGVEVC +M HGGP+PA++D+R+TSV Sbjct: 426 TATLHGNESDWAHAHSLVDAIGQRVGRLIFNQMPTGVEVCHSMNHGGPYPASTDSRSTSV 485 Query: 482 GTAAILRFLRPVCYQDVPDALLPQALKHGNPLQLR 516 G+ AI R+ RP+CYQ++P ALLP+AL+ G L R Sbjct: 486 GSMAIHRWTRPICYQNMPTALLPEALRDGQSLLKR 520 Lambda K H 0.319 0.134 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 741 Number of extensions: 20 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 525 Length of database: 521 Length adjustment: 35 Effective length of query: 490 Effective length of database: 486 Effective search space: 238140 Effective search space used: 238140 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory