Align succinate-semialdehyde dehydrogenase (NADP+) (EC 1.2.1.79) (characterized)
to candidate 5210745 Shew_3173 succinic semialdehyde dehydrogenase (RefSeq)
Query= BRENDA::P25526 (482 letters) >FitnessBrowser__PV4:5210745 Length = 485 Score = 584 bits (1506), Expect = e-171 Identities = 284/480 (59%), Positives = 357/480 (74%), Gaps = 3/480 (0%) Query: 3 LNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRALP 62 + D+ L + + I+G W + DV NPA+ + + V D+T+ AI AA RALP Sbjct: 4 IKDTQLIKLSSYIDGRWTVGE--QRFDVVNPASQEVIAQVVDASLDDTQEAILAAKRALP 61 Query: 63 AWRALTAKERATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFAEE 122 W +A ERA ++R WFNLMMEHQ+DL RL+TLEQGKPLAEAKGEI+Y A+FI+WFAEE Sbjct: 62 EWSKRSANERAALMRKWFNLMMEHQEDLGRLLTLEQGKPLAEAKGEIAYGAAFIDWFAEE 121 Query: 123 GKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPA 182 GKR+YGDTIP DKR++VIKQP+GV A+ITPWNFP AMI RKA ALAAGCT V +P+ Sbjct: 122 GKRVYGDTIPAPANDKRILVIKQPVGVVASITPWNFPNAMIARKAAAALAAGCTFVARPS 181 Query: 183 SQTPFSALALAELAIRAGVPAGVFNVVTGS-AGAVGNELTSNPLVRKLSFTGSTEIGRQL 241 TP SALA+AELA RAG+PAGVFN+V G A +G LT +P V K +FTGST +G+ L Sbjct: 182 PLTPLSALAMAELAERAGIPAGVFNIVVGEDAVGMGKVLTQHPDVAKFTFTGSTAVGKIL 241 Query: 242 MEQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQDGV 301 + QCA +KKVS+ELGGNAPFIVFDDAD+D AV+GAL SK+RNAGQTCVC NR++VQ GV Sbjct: 242 LAQCATSVKKVSMELGGNAPFIVFDDADIDAAVQGALISKYRNAGQTCVCTNRIFVQKGV 301 Query: 302 YDRFAEKLQQAVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKAH 361 F EK AV+ L +GDGL +GVT+GP+I + AV V + + D + GA++V GG+ Sbjct: 302 AAAFTEKFTAAVANLKLGDGLGDGVTVGPMISKDAVQNVLKLVDDTVASGAKLVTGGQPS 361 Query: 362 ERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFYAR 421 E G +F P I+ DV +++ E FGP+ P+ F EA+ +A ANDTE+GLAAYFYAR Sbjct: 362 ELGESFLAPVIVTDVTNEMPLARNEIFGPVTPIISFDSEAEALAMANDTEYGLAAYFYAR 421 Query: 422 DLSRVFRVGEALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMCIG 481 D+ R+FRV E LEYG+VG+N GIISN APFGG+K SG GREGSKYG++DYLEIKY+C+G Sbjct: 422 DIGRIFRVAEGLEYGMVGVNEGIISNAAAPFGGVKQSGNGREGSKYGLDDYLEIKYLCLG 481 Lambda K H 0.318 0.135 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 703 Number of extensions: 21 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 485 Length adjustment: 34 Effective length of query: 448 Effective length of database: 451 Effective search space: 202048 Effective search space used: 202048 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory